Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulas Im is active.

Publication


Featured researches published by Ulas Im.


Science of The Total Environment | 2010

Aerosol chemical composition over Istanbul

C. Theodosi; Ulas Im; A. Bougiatioti; P. Zarmpas; Orhan Yenigün; N. Mihalopoulos

This study examines the chemical composition of aerosols over the Greater Istanbul Area. To achieve this 325 (PM(10)) aerosol samples were collected over Bosphorus from November 2007 to June 2009 and were analysed for the main ions, trace metals, water-soluble organic carbon (WSOC), organic (OC) and elemental carbon (EC). PM(10) levels were found to be in good agreement with those measured by the Istanbul Municipality air quality network, indicating that the sampling site is representative of the Greater Istanbul Area. The main ions measured in the PM(10) samples were Na(+), Ca(2+) and non-sea-salt sulphates (nss-SO(4)(2-)). On average, 31% of Ca(2+) was found to be associated with carbonates. Trace elements related to human activities (as Pb, V, Cd and Ni) obtained peak values during winter due to domestic heating, whereas natural origin elements like Al, Fe and Mn peaked during the spring period due to dust transport from Northern Africa. Organic carbon was found to be mostly primary and elemental carbon was strongly linked to fuel oil combustion and traffic. Both OC and EC concentrations increased during winter due to domestic heating, while the higher WSOC to OC ratio during summer can be mostly attributed to the presence of secondary, oxidised and more soluble organics. Factor analysis identified six components/sources for aerosol species in PM(10), namely traffic/industrial, crustal, sea-salt, fuel-oil combustion, secondary and ammonium sulfate.


Science of The Total Environment | 2011

The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

Ulas Im; A. Poupkou; Selahattin Incecik; Konstantinos Markakis; Tayfun Kindap; Alper Unal; D. Melas; Orhan Yenigün; Sema Topcu; M. Talat Odman; Mete Tayanç; Meltem Guler

Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions.


Science of The Total Environment | 2013

Analysis of surface ozone and nitrogen oxides at urban, semi-rural and rural sites in Istanbul, Turkey

Ulas Im; Selahattin Incecik; Meltem Guler; Adil Tek; Sema Topcu; Yurdanur Sezginer Unal; Orhan Yenigün; Tayfun Kindap; M. Talat Odman; Mete Tayanç

Ozone (O(3)) mixing ratios were measured at three different sites (urban/traffic, semi-rural and rural/island) in Istanbul from September 2007 to December 2009 in order to determine the diurnal, monthly and seasonal variations of O(3) and nitrogen oxides (NO(x)) and to study the local and regional impacts. This is the first study that evaluates the O(3) levels in semi-rural and rural sites in Istanbul in addition to the urban sites. The diurnal O(3) variations are generally characterized by afternoon maxima (64 ppb at the urban, 80 ppb at the semi-rural and 100 ppb at the rural site) and the nighttime minimum being more pronounced at the polluted urban site. The monthly mean O(3) mixing ratios start to increase in March, reaching their maximum values in August for the urban (~25 ppb) and semi-rural sites (30 ppb). However, at the rural site, the monthly mean O(3) levels reach their maximum value in June (35 ppb). The O(3) mixing ratios for weekends were higher than those on weekdays at each site by up to 28%, possibly due to changes in VOC sensitivity and reduction in NO(x) levels. In order to better understand and characterize the relationship between air masses and O(3) levels, cluster analysis was applied to the back-trajectories calculated by the HYSPLIT model for the semi-rural site. The analyses clearly showed that major transport is characterized by northern and western clusters, particularly from the Eastern Europe and the Mediterranean region, as well as recirculation over Istanbul due to high pressure systems leading to accumulated levels of O(3). The results clearly suggest that extended measurement networks from urban to rural sites should be considered for a more comprehensive evaluation of O(3) levels.


Atmospheric Chemistry and Physics | 2016

Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems : Multivariable temporal and spatial breakdown

Efisio Solazzo; Roberto Bianconi; Christian Hogrefe; Gabriele Curci; Paolo Tuccella; Ummugulsum Alyuz; Alessandra Balzarini; Rocío Baró; Roberto Bellasio; Johannes Bieser; Jørgen Brandt; Jesper Christensen; Augistin Colette; Xavier Vazhappilly Francis; Andrea Fraser; Marta G. Vivanco; Pedro Jiménez-Guerrero; Ulas Im; Astrid Manders; Uarporn Nopmongcol; Nutthida Kitwiroon; Guido Pirovano; Luca Pozzoli; Marje Prank; Ranjeet S. Sokhi; Alper Unal; Greg Yarwood; Stefano Galmarini

Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overallsense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluaion methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.


Atmospheric Pollution Research | 2012

Compilation of a GIS based high spatially and temporally resolved emission inventory for the greater Istanbul area

Konstantinos Markakis; Ulas Im; Alper Unal; Dimitrios Melas; Orhan Yenigün; Selahattin Incecik

Emission inventories are a fundamental input to atmospheric chemical transport models (CTMs). As the latter become increasingly demanding, modern inventories began to provide much more information (high spatial and temporal disaggregation, more chemical compounds etc). In this study we present a computational approach, an emission processing kernel that is used to compile a high spatially and temporally resolved emission inventory for the anthropogenic sources covering the Greater Istanbul Area (GIA) for the reference year 2007. The emission processor is used to produce emissions for a 92 x 57 km area covering the GIA with 2 km grid resolution. The emission inventory has high temporal resolution, covering monthly, weekly and diurnal processing and includes CO, NOx, SOx, NH3, and chemically speciated PM10, PM2.5 and NMVOCs emissions. PM10 and PM2.5 are chemically split into organic carbon, elemental carbon, sulfates, nitrates, ammonium and other particles while NMVOCs are chemically speciated into 23 chemical compounds. The compilation process includes the use of various activity information and statistical data that were gathered from local official authorities and experts, measurements, published studies for the region or extracted from pre–existing databases. The results indicate that the road transport sector is the main contributor to the emissions in the area, whereas residential combustion (for SOx) and solvent use (for NMVOCs) are also important source categories. Industrial combustion is found out to be the main SOx emitter. The temporal calculations show that monthly distributions follow the seasonal variation for most of the pollutants with higher emissions in winter time. Diurnal calculations show that the profile fits with the rush hours due to the highest contribution of traffic emissions.


Science of The Total Environment | 2014

Spatial and temporal analysis of black carbon aerosols in Istanbul megacity.

Huseyin Ozdemir; Luca Pozzoli; Tayfun Kindap; Goksel Demir; Bulent Mertoglu; Nikos Mihalopoulos; C. Theodosi; M. Kanakidou; Ulas Im; Alper Unal

Black carbon (BC) is an important component of particulate matter due to its effects on human health and climate. In this study, we present the first BC concentrations measured in the Istanbul megacity (~15 million inhabitants). Two measurement campaigns have been conducted to measure BC and fine particulate matter (PM2.5) concentrations at four locations, characterized by different traffic densities. In the first campaign, BC daily mean concentrations have been found to be between 4 μg/m(3) and 10 μg/m(3). In the second campaign, BC and PM2.5 have been measured at the site with the highest traffic density for an entire year. Annually averaged BC contributes by 38 ± 14% to the PM2.5 levels (annual average BC: 13 μg/m(3) and PM2.5: 36 μg/m(3)). Diurnal variations of BC concentrations followed those of traffic density (correlation coefficient of 0.87). These measurements are essential to identify the sources of BC and PM2.5 concentrations in Istanbul and develop mitigation measures.


International Journal of Environment and Pollution | 2005

An application of a puff dispersion model on power plant emissions in Yatagan region, Turkey

Ulas Im; Orhan Yenigün

The present paper describes the application of the CALMET meteorological model and CALPUFF plume dispersion model to the Yatagan district to study the impact of Yatagan Power Plant emissions on the SO2 levels on December 2000 in the region. Results indicate that SO2 concentrations over the city depend strongly on advected emissions from the power plant and on the local variation of the wind field and limited vertical mixing conditions. It is found that South Westerly and light winds and the night time surface inversion layers lead to accumulation of pollutants coming from the power plant over the Yatagan district. The results are compared with the observations obtained from Local Environmental Authorities of Mugla. The simulation results indicate that the maximum ground level concentrations were found northeast from the source, which agrees with the measurements, but differ in terms of magnitudes.


Atmospheric Chemistry and Physics | 2017

Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3

Ulas Im; Jørgen Brandt; Camilla Geels; Kaj M. Hansen; Jesper Christensen; Mikael Skou Andersen; Efisio Solazzo; I. Kioutsioukis; Ummugulsum Alyuz; Alessandra Balzarini; Rocío Baró; Roberto Bellasio; Roberto Bianconi; Johannes Bieser; Augustin Colette; Gabriele Curci; Aidan Farrow; Johannes Flemming; Andrea Fraser; Pedro Jiménez-Guerrero; Nutthida Kitwiroon; Ciao-Kai Liang; Guido Pirovano; Luca Pozzoli; Marje Prank; Rebecca Rose; Ranjeet S. Sokhi; Paolo Tuccella; Alper Unal; Marta G. Vivanco

The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.


Science of The Total Environment | 2014

Simulated air quality and pollutant budgets over Europe in 2008

Ulas Im; Nikos Daskalakis; Konstantinos Markakis; M. Vrekoussis; J. Hjorth; S. Myriokefalitakis; E. Gerasopoulos; G. Kouvarakis; Andreas Richter; J. P. Burrows; Luca Pozzoli; Alper Unal; Tayfun Kindap; M. Kanakidou

Major gaseous and particulate pollutant levels over Europe in 2008 have been simulated using the offline-coupled WRFCMAQ chemistry and transport modeling system. The simulations are compared with surface observations from the EMEP stations, ozone (O3) soundings, ship-borne O3 and nitrogen dioxide (NO2) observations in the western Mediterranean, tropospheric NO2 vertical column densities from the SCIAMACHY instrument, and aerosol optical depths (AOD) from the AERONET. The results show that on average, surface O3 levels are underestimated by 4 to 7% over the northern European EMEP stations while they are overestimated by 7-10% over the southern European EMEP stations and underestimated in the tropospheric column (by 10-20%). Particulate matter (PM) mass concentrations are underestimated by up to 60%, particularly in southern and eastern Europe, suggesting underestimated PM sources. Larger differences are calculated for individual aerosol components, particularly for organic and elemental carbon than for the total PM mass, indicating uncertainty in the combustion sources. Better agreement has been obtained for aerosol species over urban areas of the eastern Mediterranean, particularly for nss-SO4(2), attributed to the implementation of higher quality emission inventories for that area. Simulated AOD levels are lower than the AERONET observations by 10% on average, with average underestimations of 3% north of 40°N, attributed to the low anthropogenic emissions in the model and 22% south of 40°N, suggesting underestimated natural and resuspended dust emissions. Overall, the results reveal differences in the model performance between northern and southern Europe, suggesting significant differences in the representation of both anthropogenic and natural emissions in these regions. Budget analyses indicate that O3 and peroxyacetyl nitrate (PAN) are transported from the free troposphere (FT) to the planetary boundary layer over Europe, while other species follow the reverse path and are then advected away from the source region.


Archive | 2012

Air Pollution in Mega Cities: A Case Study of Istanbul

Selahattin Incecik; Ulas Im

A megacity is defined by the United Nations as a metropolitan area with a total population of more than 10 million people. This chapter provides a brief introduction to the air pollution in megacities worldwide. This is an extensive topic and brings together recent comprehensive reviews from particular megacities. We have here highlighted the air quality in megacities that are of particular relevance to health effects.

Collaboration


Dive into the Ulas Im's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Pirovano

World Meteorological Organization

View shared research outputs
Top Co-Authors

Avatar

Alper Unal

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tayfun Kindap

Istanbul Technical University

View shared research outputs
Top Co-Authors

Avatar

Renate Forkel

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge