Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulf Klein is active.

Publication


Featured researches published by Ulf Klein.


Nature Genetics | 2005

Reverse engineering of regulatory networks in human B cells

Katia Basso; Adam A. Margolin; Gustavo Stolovitzky; Ulf Klein; Riccardo Dalla-Favera

Cellular phenotypes are determined by the differential activity of networks linking coregulated genes. Available methods for the reverse engineering of such networks from genome-wide expression profiles have been successful only in the analysis of lower eukaryotes with simple genomes. Using a new method called ARACNe (algorithm for the reconstruction of accurate cellular networks), we report the reconstruction of regulatory networks from expression profiles of human B cells. The results are suggestive a hierarchical, scale-free network, where a few highly interconnected genes (hubs) account for most of the interactions. Validation of the network against available data led to the identification of MYC as a major hub, which controls a network comprising known target genes as well as new ones, which were biochemically validated. The newly identified MYC targets include some major hubs. This approach can be generally useful for the analysis of normal and pathologic networks in mammalian cells.


Nature Reviews Immunology | 2008

Germinal centres: role in B-cell physiology and malignancy

Ulf Klein; Riccardo Dalla-Favera

Over the past several years, studies on normal and malignant B cells have provided new insights into the unique physiology of the germinal centre (GC). In particular, advances in technology have allowed a more precise dissection of the phenotypes of GC B cells and the specific transcriptional programmes that are responsible for this phenotype. Furthermore, substantial progress has been made in the understanding of the mechanism controlling the exit of B cells from the GC and the decision to become a memory B cell or plasma cell. This Review focuses on these recent advances and discusses their implications for the pathogenesis of B-cell lymphomas.


Cancer Cell | 2010

The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.

Ulf Klein; Marie Lia; Marta Crespo; Rachael Siegel; Qiong Shen; Tongwei Mo; Alberto Ambesi-Impiombato; Anna Migliazza; Govind Bhagat; Riccardo Dalla-Favera

Chronic lymphocytic leukemia (CLL) is a malignancy of B cells of unknown etiology. Deletions of the chromosomal region 13q14 are commonly associated with CLL, with monoclonal B cell lymphocytosis (MBL), which occasionally precedes CLL, and with aggressive lymphoma, suggesting that this region contains a tumor-suppressor gene. Here, we demonstrate that deletion in mice of the 13q14-minimal deleted region (MDR), which encodes the DLEU2/miR-15a/16-1 cluster, causes development of indolent B cell-autonomous, clonal lymphoproliferative disorders, recapitulating the spectrum of CLL-associated phenotypes observed in humans. miR-15a/16-1-deletion accelerates the proliferation of both human and mouse B cells by modulating the expression of genes controlling cell-cycle progression. These results define the role of 13q14 deletions in the pathogenesis of CLL.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Transcriptional analysis of the B cell germinal center reaction

Ulf Klein; Yuhai Tu; Gustavo Stolovitzky; Jeffrey L. Keller; Joseph Haddad; Vladan Miljkovic; Giorgio Cattoretti; Riccardo Dalla-Favera

The germinal center (GC) reaction is crucial for T cell-dependent immune responses and is targeted by B cell lymphomagenesis. Here we analyzed the transcriptional changes that occur in B cells during GC transit (naïve B cells → centroblasts → centrocytes → memory B cells) by gene expression profiling. Naïve B cells, characterized by the expression of cell cycle-inhibitory and antiapoptotic genes, become centroblasts by inducing an atypical proliferation program lacking c-Myc expression, switching to a proapoptotic program, and down-regulating cytokine, chemokine, and adhesion receptors. The transition from GC to memory cells is characterized by a return to a phenotype similar to that of naïve cells except for an apoptotic program primed for both death and survival and for changes in the expression of cell surface receptors including IL-2 receptor β. These results provide insights into the dynamics of the GC reaction and represent the basis for the analysis of B cell malignancies.


Cell Metabolism | 2011

Transcriptional control of adipose lipid handling by IRF4.

Jun Eguchi; Xun Wang; Songtao Yu; Erin E. Kershaw; Patricia C. Chiu; Joanne Dushay; Jennifer L. Estall; Ulf Klein; Eleftheria Maratos-Flier; Evan D. Rosen

Adipocytes store triglyceride during periods of nutritional affluence and release free fatty acids during fasting through coordinated cycles of lipogenesis and lipolysis. While much is known about the acute regulation of these processes during fasting and feeding, less is understood about the transcriptional basis by which adipocytes control lipid handling. Here, we show that interferon regulatory factor 4 (IRF4) is a critical determinant of the transcriptional response to nutrient availability in adipocytes. Fasting induces IRF4 in an insulin- and FoxO1-dependent manner. IRF4 is required for lipolysis, at least in part due to direct effects on the expression of adipocyte triglyceride lipase and hormone-sensitive lipase. Conversely, reduction of IRF4 enhances lipid synthesis. Mice lacking adipocyte IRF4 exhibit increased adiposity and deficient lipolysis. These studies establish a link between IRF4 and the disposition of calories in adipose tissue, with consequences for systemic metabolic homeostasis.


Nature Reviews Immunology | 2015

Dynamics of B cells in germinal centres

Nilushi S. De Silva; Ulf Klein

Humoral immunity depends on the germinal centre (GC) reaction during which somatically mutated high-affinity memory B cells and plasma cells are generated. Recent studies have uncovered crucial cues that are required for the formation and the maintenance of GCs and for the selection of high-affinity antibody mutants. In addition, it is now clear that these events are promoted by the dynamic movements of cells within and between GCs. These findings have resolved the complexities of the GC reaction in greater detail than ever before. This Review focuses on these recent advances and discusses their implications for the establishment of humoral immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Quantitative noise analysis for gene expression microarray experiments

Y. Tu; G. Stolovitzky; Ulf Klein

A major challenge in DNA microarray analysis is to effectively dissociate actual gene expression values from experimental noise. We report here a detailed noise analysis for oligonuleotide-based microarray experiments involving reverse transcription, generation of labeled cRNA (target) through in vitro transcription, and hybridization of the target to the probe immobilized on the substrate. By designing sets of replicate experiments that bifurcate at different steps of the assay, we are able to separate the noise caused by sample preparation and the hybridization processes. We quantitatively characterize the strength of these different sources of noise and their respective dependence on the gene expression level. We find that the sample preparation noise is small, implying that the amplification process during the sample preparation is relatively accurate. The hybridization noise is found to have very strong dependence on the expression level, with different characteristics for the low and high expression values. The hybridization noise characteristics at the high expression regime are mostly Poisson-like, whereas its characteristics for the small expression levels are more complex, probably due to cross-hybridization. A method to evaluate the significance of gene expression fold changes based on noise characteristics is proposed.


Journal of Clinical Investigation | 2007

Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets

Pier Paolo Piccaluga; Claudio Agostinelli; Maura Rossi; Katia Basso; Simonetta Zupo; Philip Went; Ulf Klein; Pier Luigi Zinzani; Michele Baccarani; Riccardo Dalla Favera; Stefano Pileri

Peripheral T cell lymphoma, unspecified (PTCL/U), the most common form of PTCL, displays heterogeneous morphology and phenotype, poor response to treatment, and poor prognosis. We demonstrate that PTCL/U shows a gene expression profile clearly distinct from that of normal T cells. Comparison with the profiles of purified T cell subpopulations (CD4+, CD8+, resting [HLA-DR-], and activated [HLA-DR+]) reveals that PTCLs/U are most closely related to activated peripheral T lymphocytes, either CD4+ or CD8+. Interestingly, the global gene expression profile cannot be surrogated by routine CD4/CD8 immunohistochemistry. When compared with normal T cells, PTCLs/U display deregulation of functional programs often involved in tumorigenesis (e.g., apoptosis, proliferation, cell adhesion, and matrix remodeling). Products of deregulated genes can be detected in PTCLs/U by immunohistochemistry with an ectopic, paraphysiologic, or stromal location. PTCLs/U aberrantly express, among others, PDGFRalpha, a tyrosine-kinase receptor, whose deregulation is often related to a malignant phenotype. Notably, both phosphorylation of PDGFRalpha and sensitivity of cultured PTCL cells to imatinib (as well as to an inhibitor of histone deacetylase) were found. These results, which might be extended to other more rare PTCL categories, provide insight into tumor pathogenesis and clinical management of PTCL/U.


Journal of Clinical Investigation | 2003

Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling

Ralf Küppers; Ulf Klein; Ines Schwering; Verena Distler; Andreas Bräuninger; Giorgio Cattoretti; Yuhai Tu; Gustavo Stolovitzky; Martin-Leo Hansmann; Riccardo Dalla-Favera

Hodgkin lymphoma (HL) is a malignancy of unknown pathogenesis. The malignant Hodgkin and Reed/Sternberg (HRS) cells derive from germinal center B cells (or rarely, T cells) but have a heterogeneous and largely uncharacterized phenotype. Using microarrays, we compared the gene expression profile of four HL cell lines with profiles of the main B cell subsets and B cell non-HLs to find out whether HRS cells, despite their described heterogeneity, show a distinct gene expression, to study their relationship to other normal and malignant B cells, and to identify genes aberrantly or overexpressed by HRS cells. The HL lines indeed clustered as a distinct entity, irrespective of their B or T cell derivation, and their gene expression was most similar to that of EBV-transformed B cells and cell lines derived from diffuse large cell lymphomas showing features of in vitro-activated B cells. Twenty-seven genes, most of which were previously unknown to be expressed by HRS cells, showed aberrant expression specifically in these cells, e.g., the transcription factors GATA-3, ABF1, EAR3, and Nrf3. For five genes, expression in primary HRS cells was confirmed. The newly identified HL-specific genes may play important roles in the pathogenesis of HL, potentially represent novel diagnostic markers, and can be considered for therapeutic targeting.


Nature Biotechnology | 2009

Genome-wide Identification of Post-translational Modulators of Transcription Factor Activity in Human B-Cells

Kai Wang; Masumichi Saito; Brygida Bisikirska; Mariano J. Alvarez; Wei Keat Lim; Presha Rajbhandari; Qiong Shen; Ilya Nemenman; Katia Basso; Adam A. Margolin; Ulf Klein; Riccardo Dalla-Favera

The ability of a transcription factor (TF) to regulate its targets is modulated by a variety of genetic and epigenetic mechanisms, resulting in highly context-dependent regulatory networks. However, high-throughput methods for the identification of proteins that affect TF activity are still largely unavailable. Here we introduce an algorithm, modulator inference by network dynamics (MINDy), for the genome-wide identification of post-translational modulators of TF activity within a specific cellular context. When used to dissect the regulation of MYC activity in human B lymphocytes, the approach inferred novel modulators of MYC function, which act by distinct mechanisms, including protein turnover, transcription complex formation and selective enzyme recruitment. MINDy is generally applicable to study the post-translational modulation of mammalian TFs in any cellular context. As such it can be used to dissect context-specific signaling pathways and combinatorial transcriptional regulation.

Collaboration


Dive into the Ulf Klein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Küppers

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Klaus Rajewsky

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Govind Bhagat

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge