Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulf Matti is active.

Publication


Featured researches published by Ulf Matti.


The EMBO Journal | 2005

v‐SNAREs control exocytosis of vesicles from priming to fusion

Maria Borisovska; Ying Zhao; Yaroslav Tsytsyura; Nataliya Glyvuk; Shigeo Takamori; Ulf Matti; Jens Rettig; Thomas C. Südhof; Dieter Bruns

SNARE proteins (soluble NSF‐attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle‐associated SNARE proteins (v‐SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca2+‐dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v‐SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v‐SNAREs amino terminus regulates the vesicles primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v‐SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.


Neuron | 2004

Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25

Gábor Nagy; Kerstin Reim; Ulf Matti; Nils Brose; Thomas Binz; Jens Rettig; Erwin Neher; Jakob B. Sørensen

Protein kinase A (PKA) is a key regulator of neurosecretion, but the molecular targets remain elusive. We combined pharmacological manipulations of kinase and phosphatase activities with mutational studies on the exocytotic machinery driving fusion of catecholamine-containing vesicles from chromaffin cells. We found that constitutive PKA activity was necessary to maintain a large number of vesicles in the release-ready, so-called primed, state, whereas calcineurin (protein phosphatase 2B) activity antagonized this effect. Overexpression of the SNARE protein SNAP-25a mutated in a PKA phosphorylation site (Thr-138) eliminated the effect of PKA inhibitors on the vesicle priming process. Another, unidentified, PKA target regulated the relative size of two different primed vesicle pools that are distinguished by their release kinetics. Overexpression of the SNAP-25b isoform increased the size of both primed vesicle pools by a factor of two, and mutations in the conserved Thr-138 site had similar effects as in the a isoform.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis

Jakob B. Sørensen; Ulf Matti; Shunhui Wei; Ralf B. Nehring; Thomas Voets; Uri Ashery; Thomas Binz; Erwin Neher; Jens Rettig

Synchronous neurotransmission depends on the tight coupling between Ca2+ influx and fusion of neurotransmitter-filled vesicles with the plasma membrane. The vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein synaptobrevin 2 and the plasma membrane SNAREs syntaxin 1 and synaptosomal protein of 25 kDa (SNAP-25) are essential for calcium-triggered exocytosis. However, the link between calcium triggering and SNARE function remains elusive. Here we describe mutations in two sites on the surface of the SNARE complex formed by acidic and hydrophilic residues of SNAP-25 and synaptobrevin 2, which were found to coordinate divalent cations in the neuronal SNARE complex crystal structure. By reducing the net charge of the site in SNAP-25 we identify a mutation that interferes with calcium triggering of exocytosis when overexpressed in chromaffin cells. Exocytosis was elicited by photorelease of calcium from a calcium cage and evaluated by using patch-clamp capacitance measurements at millisecond time resolution. We present a method for monitoring the dependence of exocytotic rate upon calcium concentration at the release site and demonstrate that the mutation decreased the steepness of this relationship, indicating that the number of sequential calcium-binding steps preceding exocytosis is reduced by one. We conclude that the SNARE complex is linked directly to calcium triggering of exocytosis, most likely in a complex with auxiliary proteins.


Current Biology | 2005

Identification of the Minimal Protein Domain Required for Priming Activity of Munc13-1

David R. Stevens; Zheng-Xing Wu; Ulf Matti; Harald J. Junge; Claudia Schirra; Ute Becherer; Sonja M. Wojcik; Nils Brose; Jens Rettig

Most nerve cells communicate with each other through synaptic transmission at chemical synapses. The regulated exocytosis of neurotransmitters, hormones, and peptides occurs at specialized membrane areas through Ca2+-triggered fusion of secretory vesicles with the plasma membrane . Prior to fusion, vesicles are docked at the plasma membrane and must then be rendered fusion-competent through a process called priming. The molecular mechanism underlying this priming process is most likely the formation of the SNARE complex consisting of Syntaxin 1, SNAP-25, and Synaptobrevin 2. Members of the Munc13 protein family consisting of Munc13-1, -2, -3, and -4 were found to be absolutely required for this priming process . In the present study, we identified the minimal Munc13-1 domain that is responsible for its priming activity. Using Munc13-1 deletion constructs in an electrophysiological gain-of-function assay of chromaffin-granule secretion, we show that priming activity is mediated by the C-terminal residues 1100-1735 of Munc13-1, which contains both Munc13-homology domains and the C-terminal C2 domain. Priming by Munc13-1 appears to require its interaction with Syntaxin 1 because point mutants that do not bind Syntaxin 1 do not prime chromaffin granules.


The Journal of Neuroscience | 2006

Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation.

Gábor Nagy; Jun Hee Kim; Zhiping P. Pang; Ulf Matti; Jens Rettig; Thomas C. Südhof; Jakob B. Sørensen

Synaptotagmins comprise a large protein family, of which synaptotagmin 1 (Syt1) is a Ca2+ sensor for fast exocytosis, and its close relative, synaptotagmin 2 (Syt2), is assumed to serve similar functions. Chromaffin cells express Syt1 but not Syt2. We compared secretion from chromaffin cells from Syt1 null mice overexpressing either Syt isoform. High time-resolution capacitance measurement showed that Syt1 null cells lack the exocytotic phase corresponding to the readily-releasable pool (RRP) of vesicles. Comparison with the amperometric signal confirmed that the missing phase of exocytosis consists of catecholamine-containing vesicles. Overexpression of Syt1 rescued the RRP and increased its size above wild-type values, whereas the size of the slowly releasable pool decreased, indicating that the availability of Syt1 regulates the relative size of the two releasable pools. The RRP was also rescued by Syt2 overexpression, but the kinetics of fusion was slightly slower than in cells expressing Syt1. Biochemical experiments showed that Syt2 has a slightly lower Ca2+ affinity for phospholipid binding than Syt1 because of a difference in the C2A domain. These data constitute evidence for the function of Syt1 and Syt2 as alternative, but not identical, calcium-sensors for RRP fusion. By overexpression of Syt1 mutated in the shared PKC/calcium/calmodulin-dependent kinase phosphorylation site, we show that phorbol esters act independently and upstream of Syt1 to regulate the size of the releasable pools. We conclude that exocytosis from mouse chromaffin cells can be modified by the differential expression of Syt isoforms and by Syt abundance but not by phosphorylation of Syt1.


The EMBO Journal | 2000

Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25.

Shunhui Wei; Tao Xu; Uri Ashery; Astrid Kollewe; Ulf Matti; Wolfram Antonin; Jens Rettig; Erwin Neher

The highly conserved SNARE proteins, SNAP‐25, syntaxin and synaptobrevin, form a tight ternary complex, which is essential for exocytosis. Crystallization of this complex revealed a four‐helix bundle with an unusual hydrophilic layer (zero layer) in its center. In order to evaluate the role of this layer in different kinetic components of secretion, we used the Semliki Forest virus (SFV) system to infect adrenal chromaffin cells with SNAP‐25 Q174L, a point mutant in the zero layer. Using combined flash photolysis of caged calcium and membrane capacitance measurements, we investigated its effect on the exocytotic burst and sustained phase of exocytosis with high time resolution. Cells expressing SNAP‐25 Q174L displayed a selective reduction in the sustained phase, while the two components of the exocytotic burst remained unaffected. Furthermore, the exocytotic response to the second flash was significantly reduced, indicating a decrease in refilling kinetics. We therefore conclude that the zero layer is critical for the formation of SNARE complexes, but that it plays no role in the dynamic equilibrium between the two exocytosis‐competent vesicle pools.


The Journal of Neuroscience | 2007

Primed Vesicles Can Be Distinguished from Docked Vesicles by Analyzing Their Mobility

Shahira Nofal; Ute Becherer; Detlef Hof; Ulf Matti; Jens Rettig

Neurotransmitters are released from nerve terminals and neuroendocrine cells by calcium-dependent exocytosis of vesicles. Before fusion, vesicles are docked to the plasma membrane and rendered release competent through a process called priming. Electrophysiological methods such as membrane capacitance measurements and carbon fiber amperometry accurately measure the fusion step of exocytosis with high time resolution but provide only indirect information about priming and docking. Total internal reflection fluorescence microscopy (TIRFM) enables the real-time visualization of vesicles, near the plasma membrane, as they undergo changes from one molecular state to the other. We devised a new method to analyze the mobility of vesicles, which not only allowed us to classify the movement of vesicles in three different categories but also to monitor dynamic changes in the mobility of vesicles over time. We selectively enhanced priming by treating bovine chromaffin cells with phorbol myristate acetate (PMA) or by overexpressing Munc13-1 (mammalian Unc) and analyzed the mobility of large dense-core vesicles. We demonstrate that nearly immobile vesicles represent primed vesicles because the pool of vesicles displaying this type of mobility was significantly increased after PMA treatment and Munc13-1 overexpression and decreased during tetanus toxin expression. Moreover, we showed that the movement of docked but unprimed vesicles is restricted to a confined region of ∼220 nm diameter. Finally, a small third population of undocked vesicles showed a directed and probably active type of mobility. For the first time, we can thus distinguish the molecular state of vesicles in TIRFM by their mobility.


The Journal of Neuroscience | 2005

The role of snapin in neurosecretion: Snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells

Jin Hua Tian; Zaeng Xing Wu; Michael Unzicker; Li Lu; Qian Cai; Cuiling Li; Claudia Schirra; Ulf Matti; David R. Stevens; Chuxia Deng; Jens Rettig; Zu-Hang Sheng

Identification of the molecules that regulate the priming of synaptic vesicles for fusion and the structural coupling of the calcium sensor with the soluble N-ethyl maleimide sensitive factor adaptor protein receptor (SNARE)-based fusion machinery is critical for understanding the mechanisms underlying calcium-dependent neurosecretion. Snapin binds to synaptosomal-associated protein 25 kDa (SNAP-25) and enhances the association of the SNARE complex with synaptotagmin. In the present study, we abolished snapin expression in mice and functionally evaluated the role of Snapin in neuroexocytosis. We found that the association of synaptotagmin-1 with SNAP-25 in brain homogenates of snapin mutant mice is impaired. Consequently, the absence of Snapin in embryonic chromaffin cells leads to a significant reduction of calcium-dependent exocytosis resulting from a decreased number of vesicles in releasable pools. Overexpression of Snapin fully rescued this inhibitory effect in the mutant cells. Furthermore, Snapin is relatively enriched in the purified large dense-core vesicles of chromaffin cells and associated with synaptotagmin-1. Thus, our biochemical and electrophysiological studies using snapin knock-out mice demonstrate that Snapin plays a critical role in modulating neurosecretion by stabilizing the release-ready vesicles.


The Journal of Neuroscience | 2008

CAPS Facilitates Filling of the Rapidly Releasable Pool of Large Dense-Core Vesicles

Yuanyuan Liu; Claudia Schirra; David R. Stevens; Ulf Matti; Dina Speidel; Detlef Hof; Dieter Bruns; Nils Brose; Jens Rettig

Calcium-activator protein for secretion (CAPS) is a cytosolic protein that associates with large dense-core vesicles and is involved in their secretion. Mammals express two CAPS isoforms, which share a similar domain structure including a Munc13 homology domain that is believed to be involved in the priming of secretory vesicles. A variety of studies designed to perturb CAPS function indicate that CAPS is involved in the secretion of large dense-core vesicles, but where in the secretory pathway CAPS acts is still under debate. Mice in which one allele of the CAPS-1 gene is deleted exhibit a deficit in catecholamine secretion from chromaffin cells. We have examined catecholamine secretion from chromaffin cells in which both CAPS genes were deleted and show that the deletion of both CAPS isoforms causes a strong reduction in the pool of rapidly releasable chromaffin granules and of sustained release during ongoing stimulation. We conclude that CAPS is required for the adequate refilling and/or maintenance of a rapidly releasable granule pool.


Journal of Cell Biology | 2010

Two distinct secretory vesicle-priming steps in adrenal chromaffin cells

Yuanyuan Liu; Claudia Schirra; Ludwig Edelmann; Ulf Matti; Jeong-Seop Rhee; Detlef Hof; Dieter Bruns; Nils Brose; Heiko Rieger; David R. Stevens; Jens Rettig

The calcium-dependent activator proteins for secretion, CAPS1 and CAPS2, facilitate syntaxin opening during synaptic vesicle priming.

Collaboration


Dive into the Ulf Matti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge