Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulf Skyllberg is active.

Publication


Featured researches published by Ulf Skyllberg.


Journal of Geophysical Research | 2008

Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production

Ulf Skyllberg

[1] Current research focus in mercury biogeochemistry is on the net production and accumulation of methyl mercury (MeHg) in organisms. The activity of iron- and sulfate-reducing bacteria (FeRB and SRB) has been identified as important for MeHg production. There are indications of a passive uptake of neutral Hg-sulfides by SRB, as well as of a facilitated bacterial uptake of Hg complexed by small organic molecules. In order to understand these processes, the chemical speciation of Hg and MeHg, and most important, the competition among organic thiols and inorganic sulfides and polysulfides, needs to be clarified under suboxic conditions (nM to low μM range of total sulfide concentrations) in wetland soils and sediments. In this paper the chemical speciation of Hg and MeHg is modeled at pH 4.0 and 7.0 in a conceptual wetland soil/sediment with typical concentrations of thiols, sulfides, Hg, and MeHg. Effects of precipitated HgS(s), the formation of Hg-polysulfides, and the size of the controversial stability constant for the formation of HOHgSH 0 (aq) are emphasized. The outcome of the modeling is discussed in light of chosen stability constants for Hg complexes with thiols, sulfides, and polysulfides. It is concluded that organic thiols are competitive with inorganic sulfides in the approximate total sulfide concentration range 0-1 μm. It is also concluded that increases in absolute aqueous concentrations of MeHg, or the molar ratio of dissolved MeHg/Hg, are not appropriate as indirect measures of MeHg net production, unless changes and differences in solubility of MeHg and Hg are corrected for.


Geochimica et Cosmochimica Acta | 2002

Bonding of methyl mercury to reduced sulfur groups in soil and stream organic matter as determined by x-ray absorption spectroscopy and binding affinity studies

Jin Qian; Ulf Skyllberg; Wolfgang Frech; William F. Bleam; Paul R. Bloom; Pierre Emmanuel Petit

Abstract We combined synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy and binding affinity studies to determine the coordination, geometry, and strength of methyl mercury, CH3Hg (II), bonding in soil and stream organic matter. Samples of organic soil (OS), potentially soluble organic substances (PSOS) from the soil, and organic substances from a stream (SOS) draining the soil were taken along a short “hydrological transect.” We determined the sum of concentrations of highly reduced organic S groups (designated Org-SRED), such as thiol (RSH), disulfane (RSSH), sulfide (RSR), and disulfide (RSSR), using sulfur K-edge XANES. Org-SRED varied between 27% and 64% of total S in our samples. Hg LIII-edge EXAFS analysis were determined on samples added CH3Hg (II) to yield CH3Hg (II)/Org-SRED ratios in the range 0.01–1.62. At low ratios, Hg was associated to one C atom (the methyl group) at an average distance of 2.03 ± 0.02 A and to one S atom at an average distance of 2.34 ± 0.03 A, in the first coordination shell. At calculated CH3Hg(II)/Org-SRED ratios above 0.37 in OS, 0.32 in PSOS, and 0.24 in SOS, the organic S sites were saturated by CH3Hg+, and O (and/or N) atoms were found in the first coordination shell of Hg at an average distance of 2.09 ± 0.01 A. Based on the assumption that RSH (and possibly RSSH) groups take part in the complexation of CH3Hg+, whereas RSSR and RSR groups do not, approximately 17% of total organic S consisted of RSH (+ RSSH) functionalities in the organic soil. Corresponding figures for samples PSOS and SOS were 14% and 9%, respectively. Competitive complexation of CH3Hg+ by halide ions was used to determine the average binding strength of native concentrations of CH3Hg (II) in the OS sample. Using data for Org-SRED, calculated surface complexation constants were in the range from 1016.3 to 1016.7 for a model RSH site having an acidity constant of mercaptoacetic acid. These values compare favorably with identically defined stability constants (log K1) for the binding of methyl mercury to thiol groups in well-defined organic compounds.


Environmental Science & Technology | 2010

Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II) - an EXAFS study.

Ulf Skyllberg; Andreas Drott

Knowledge about the chemical speciation of Hg(II) is a prerequisite for a proper understanding of biogeochemical processes in control of the transformation of Hg(II) into toxic and bioaccumulating monomethyl mercury. Of critical importance are structures and the stability of Hg(II)-complexes with inorganic and organic sulfur ligands in aqueous and solid phases of soils and sediments. On the basis of Hg L(III)-edge EXAFS experiments, we report Hg(II) to form a four-coordinated metacinnabar [beta-HgS(s)] phase when reacted with disordered FeS(s) (mackinawite), at pH 9.0 and a Hg(II) to FeS(s) molar ratio of 0.002-0.012. When Hg(II) (1000-20,000 microg Hg g(-1)) was added to mixtures of <5 days of aged FeS(s) (2-20%) and an organic soil at pH 5.7-6.1, a mixture of Hg(II) coordinated with two organic thiols [Hg(SR)(2)] and Hg(II) coordinated with four inorganic sulfides in a metacinnabar-like phase was formed. Surface complex formation between Hg(II) and FeS(s), or substitution of Hg(II) for Fe(II) in FeS(s), was not observed. Quantities of beta-HgS(s) and Hg(SR)(2) formed (as determined by EXAFS) were in fair agreement with theoretical thermodynamic calculations, as described by the reaction: Hg(SR)(2) + FeS(s) = HgS(s) + Fe(2+) + 2RS(-). The calculated stability constant for this reaction (log K = -16.1 - -15.4) supports a strong bonding of Hg(II) to organic thiols, corresponding to a log beta(2) for the formation of Hg(SR)(2) on the order of 42 or greater.


Environmental Science & Technology | 2012

Mercury Methylation Rates for Geochemically Relevant HgII Species in Sediments

Sofi Jonsson; Ulf Skyllberg; Mats Nilsson; Per-Olof Westlund; Andrey Shchukarev; Erik Lundberg; Erik Björn

Monomethylmercury (MeHg) in fish from freshwater, estuarine, and marine environments is a major global environmental issue. Mercury levels in biota are mainly controlled by the methylation of inorganic mercuric mercury (Hg(II)) to MeHg in water, sediments, and soils. There is, however, a knowledge gap concerning the mechanisms and rates of methylation of specific geochemical Hg(II) species. Such information is crucial for a better understanding of variations in MeHg concentrations among ecosystems and, in particular, for predicting the outcome of currently proposed measures to mitigate mercury emissions and reduce MeHg concentrations in fish. To fill this knowledge gap we propose an experimental approach using Hg(II) isotope tracers, with defined and geochemically important adsorbed and solid Hg(II) forms in sediments, to study MeHg formation. We report Hg(II) methylation rate constants, k(m), in estuarine sediments which span over 2 orders of magnitude depending on chemical form of added tracer: metacinnabar (β-(201)HgS(s)) < cinnabar (α-(199)HgS(s)) < Hg(II) reacted with mackinawite (≡FeS-(202)Hg(II)) < Hg(II) bonded to natural organic matter (NOM-(196)Hg(II)) < a typical aqueous tracer ((198)Hg(NO(3))(2)(aq)). We conclude that a combination of thermodynamic and kinetic effects of Hg(II) solid-phase dissolution and surface desorption control the Hg(II) methylation rate in sediments and cause the large observed differences in k(m)-values. The selection of relevant solid-phase and surface-adsorbed Hg(II) tracers will therefore be crucial to achieving biogeochemically accurate estimates of ambient Hg(II) methylation rates.


AMBIO: A Journal of the Human Environment | 2009

The Effects of Forestry on Hg Bioaccumulation in Nemoral/Boreal Waters and Recommendations for Good Silvicultural Practice

Kevin Bishop; Craig Allan; Lage Bringmark; Edenise Garcia; Sofie Hellsten; Lars Högbom; Kjell Johansson; Anja Lomander; Markus Meili; John Munthe; Mats Nilsson; Petri Porvari; Ulf Skyllberg; Rasmus Sørensen; Therese Zetterberg; Staffan Åkerblom

Abstract Mercury (Hg) levels are alarmingly high in fish from lakes across Fennoscandia and northern North America. The few published studies on the ways in which silviculture practices influence this problem indicate that forest operations increase Hg in downstream aquatic ecosystems. From these studies, we estimate that between one-tenth and one-quarter of the Hg in the fish of high-latitude, managed forest landscapes can be attributed to harvesting. Forestry, however, did not create the elevated Hg levels in the soils, and waterborne Hg/MeHg concentrations downstream from harvested areas are similar to those from wetlands. Given the current understanding of the way in which silviculture impacts Hg cycling, most of the recommendations for good forest practice in Sweden appear to be appropriate for high-latitude regions, e.g., leaving riparian buffer zones, as well as reducing disturbance at stream crossings and in moist areas. The recommendation to restore wetlands and reduce drainage, however, will likely increase Hg/MeHg loadings to aquatic ecosystems.


Biogeochemistry | 2012

Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands

Ida Tjerngren; Torbjörn Karlsson; Erik Björn; Ulf Skyllberg

Despite methylmercury (MeHg) production in boreal wetlands being a research focus for decades, little is known about factors in control of methylation and demethylation rates and the effect of wetland type. This is the first study reporting potential Hg methylation (km) and MeHg demethylation rate constants (kd) in boreal wetland soils. Seven wetlands situated in northern and southern Sweden were characterized by climatic parameters, nutrient status (e.g. type of vegetation, pH, C/N ratio, specific UV-absorption), iron and sulfur biogeochemistry. Based on nutrient status, the wetlands were divided into three groups; (I) three northern, nutrient poor fens, (II) a nutrient gradient ranging from an ombrotrophic bog to a fen with intermediate nutrient status, and (III) southern, more nutrient rich sites including two mesotrophic wetlands and one alder (Alnus) forest swamp. The km/kd ratio in general followed %MeHg in soil and both measures were highest at the fen site with intermediate nutrient status. Northern nutrient poor fens and the ombrotrophic bog showed intermediate values of %MeHg and km/kd. The two mesotrophic wetlands showed the lowest %MeHg and km/kd, whereas the alder swamp had high km and kd, resulting in an intermediate km/kd and %MeHg. Molybdate addition experiments suggest that net MeHg production was mainly caused by the activity of sulfate reducing bacteria. A comparison with other studies, show that km and %MeHg in boreal freshwater wetlands in general are higher than in other environments. Our results support previous suggestions that the highest MeHg net production in boreal landscapes is to be found in fens with an intermediate nutrient status.


Environmental Science & Technology | 2015

Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures.

Martin Jiskra; Jan G. Wiederhold; Ulf Skyllberg; Rose-Marie Kronberg; Irka Hajdas; Ruben Kretzschmar

Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult because of an insufficient understanding of the governing processes. We measured Hg stable isotope signatures of radiocarbon-dated boreal forest soils and modeled atmospheric Hg deposition and re-emission pathways and fluxes using a combined source and process tracing approach. Our results suggest that Hg in the soils was dominantly derived from deposition of litter (∼90% on average). The remaining fraction was attributed to precipitation-derived Hg, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative of an accumulation over decades. We provide evidence for significant Hg re-emission from organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic matter, a process previously not observed unambiguously in nature. Our data suggest that Histosols (peat soils), which exhibit at least seasonally water-saturated conditions, have re-emitted up to one-third of previously deposited Hg back to the atmosphere. Re-emission of legacy Hg following reduction by natural organic matter may therefore be an important pathway to be considered in global models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange.


Nature Communications | 2014

Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota

Sofi Jonsson; Ulf Skyllberg; Mats Nilsson; Erik Lundberg; Agneta Andersson; Erik Björn

Neurotoxic methylmercury (MeHg) formed from inorganic divalent mercury (Hg(II)) accumulates in aquatic biota and remains at high levels worldwide. It is poorly understood to what extent different geochemical Hg pools contribute to these levels. Here we report quantitative data on MeHg formation and bioaccumulation, in mesocosm water-sediment model ecosystems, using five Hg(II) and MeHg isotope tracers simulating recent Hg inputs to the water phase and Hg stored in sediment as bound to natural organic matter or as metacinnabar. Calculations for an estuarine ecosystem suggest that the chemical speciation of Hg(II) solid/adsorbed phases control the sediment Hg pools contribution to MeHg, but that input of MeHg from terrestrial and atmospheric sources bioaccumulates to a substantially greater extent than MeHg formed in situ in sediment. Our findings emphasize the importance of MeHg loadings from catchment runoff to MeHg content in estuarine biota and we suggest that this contribution has been underestimated.


Biogeochemistry | 2001

pH buffering in acidic soils developed under Picea abies and Quercus robur: Effects of soil organic matter, adsorbed cations and soil solution ionic strength

Ulf Skyllberg; K. Raulund-Rasmussen; O.K. Borggaard

Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt−1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.


Environmental Science & Technology | 2012

Eight Boreal Wetlands as Sources and Sinks for Methyl Mercury in Relation to Soil Acidity, C/N Ratio, and Small-Scale Flooding

Ida Tjerngren; Markus Meili; Erik Björn; Ulf Skyllberg

Four years of catchment export and wetland input-output mass balances are reported for inorganic Hg (Hg(inorg)), methyl mercury (MeHg), dissolved organic carbon (DOC), and sulfate in eight Swedish boreal wetlands. All wetlands had a history of artificial drainage and seven were subjected to small-scale flooding during the complete study period (two sites) or the two last years (five sites). We used an approach in which specific runoff data determined at hydrological stations situated at a distance from the studied sites were used in the calculation of water and element budgets. All wetlands except one were significant sinks for Hg(inorg). Seven wetlands were consistent sources of MeHg and one (an Alnus glutinosa swamp) was a significant sink. The pattern of MeHg yields was in good agreement with previously determined methylation and demethylation rates in the wetland soils of this study, with a maximum MeHg yield obtained in wetlands with an intermediate soil acidity (pH ∼5.0) and C/N ratio (∼20). We hypothesize that an increased nutrient status from poor to intermediate conditions promotes methylation over demethylation, whereas a further increase in nutrient status and trophy to meso- and eutrophic conditions promotes demethylation over methylation. Small-scale flooding showed no or moderate changes in MeHg yield, maintaining differences among wetlands related to nutrient status.

Collaboration


Dive into the Ulf Skyllberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rose-Marie Kronberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mats Nilsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

William F. Bleam

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge