Ulfur Arnason
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulfur Arnason.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Ulfur Arnason; Joseph A. Adegoke; Kristina Bodin; Erik W. Born; Yuzine B. Esa; Anette Gullberg; Maria Nilsson; Roger V. Short; Xiufeng Xu; Axel Janke
The strict orthology of mitochondrial (mt) coding sequences has promoted their use in phylogenetic analyses at different levels. Here we present the results of a mitogenomic study (i.e., analysis based on the set of protein-coding genes from complete mt genomes) of 60 mammalian species. This number includes 11 new mt genomes. The sampling comprises all but one of the traditional eutherian orders. The previously unrepresented order Dermoptera (flying lemurs) fell within Primates as the sister group of Anthropoidea, making Primates paraphyletic. This relationship was strongly supported. Lipotyphla (“insectivores”) split into three distinct lineages: Erinaceomorpha, Tenrecomorpha, and Soricomorpha. Erinaceomorpha was the basal eutherian lineage. Sirenia (dugong) and Macroscelidea (elephant shrew) fell within the African clade. Pholidota (pangolin) joined the Cetferungulata as the sister group of Carnivora. The analyses identified monophyletic Pinnipedia with Otariidae (sea lions, fur seals) and Odobenidae (walruses) as sister groups to the exclusion of Phocidae (true seals).
Gene | 1994
Xiufeng Xu; Ulfur Arnason
The sequence of the mitochondrial (mt) DNA of the horse (Equus caballus) was determined. The length of the sequence presented is 16,660 bp. This figure, however, is not absolute due to pronounced heteroplasmy caused by variable numbers of the motif GTGCACCT in the control region of different molecules. Boundaries of the 13 peptide-coding genes were determined by the presence of start and stop codons, and by analogy with other eutherian mtDNAs. Three genes (COIII, NADH3 and NADH4) were not terminated by a stop codon. Comparison among the peptide-coding genes of the horse and eight other mammals suggests that the boundaries of some mt genes should be redefined. The number of repeats in the control region was determined by sequencing 77 different clones (20 direct plus 57 PCR clones). The number of repeats ranged from 2 to 29. There was a pronounced overrepresentation of clones with many repeats (22-27). Very few clones had a repeat number that was close to the mean number of repeats.
Journal of Molecular Evolution | 1991
Ulfur Arnason; Anette Gullberg; Bengt Widegren
SummaryThe composition of the mitochondrial DNA (mtDNA) of the fin whale,Balaenoptera physalus, was determined. The length of the molecule is 16,398 bp, and its organization conforms with that of other mammals. The general similarity between the mtDNA of the fin whale and the cow is greater than the similarity between the fin whale and other species (human, mouse, rat) in which the composition of the entire molecule has been described. The D-loop region of the mtDNA of the fin whale is 81% identical to the D-loop of dolphin DNA, and the central portion of the D-loop is similar to the bovine D-loop. The accumulation of transversions and gaps in the 12S and 16S rRNA genes was assessed by comparing the fin whale, cow, and human. The sequence difference between human and the whale and human and the cow was at the same level, indicating that the rate of evolution of the mtDNA rRNA genes is about the same in artiodactyls and cetaceans. In the 12S rRNA gene an accumulation rate of 0.05% per million years places the separation of cetaceans and artiodactyls at about 55 million years ago. The corresponding figure for human and either the whale or the cow is about 80 million years. In the 16S rRNA gene a 0.08% accumulation rate of transversions and gaps per million years yields concurring figures. A comparison between the cytochromeb gene of the fin whale and cytochromeb sequences in the literature, including dolphin (Stenella) sequences, identified the cetaceans as monophyletic and the artiodactyls as their closest relatives. The comparison between the cytochromeb sequences of the fin whale andStenella showed that differences in codon positions one or two were frequently associated with a change in another codon position.
Journal of Molecular Evolution | 1992
Ulfur Arnason; Ellinor Johnsson
SummaryThe nucleotide sequence of the mitochondrial DNA (mtDNA) of the harbor seal, Phoca vitulina, was determined. The total length of the molecule was 16,826 bp. The organization of the coding regions of the molecule conforms with that of other mammals, but the control region is unusually long. A considerable portion of the control region is made up of short repeats with the motif GTACAC particularly frequent. The two rRNA genes and the 13 peptide-coding genes of the harbor seal, fin whale, cow, human, mouse, and rat were compared and the relationships between the different species assessed. At ordinal level the 12S rRNA gene and 7 out of the 13 peptide-coding genes yielded a congruent topological tree of the mtDNA relationship between the seal, cow, whale, human, and the rodents. In this tree the whale and the cow join first, and this clade is most closely related to the seal.
Journal of Molecular Evolution | 1998
Björn M. Ursing; Ulfur Arnason
Abstract. The complete mitochondrial genome sequence of the pig, Sus scrofa, was determined. The length of the sequence presented is 16,679 nucleotides. This figure is not absolute, however, due to pronounced heteroplasmy caused by variable numbers of the motif GTACACGTGC in the control region of different molecules. A phylogenetic study was performed on the concatenated amino acid and nucleotide sequences of 12 protein-coding genes of the mitochondrial genome. The analysis identified the pig (Suiformes) as a sister group of a cow/whale clade, making Artiodactyla paraphyletic. The split between pig and cow/whale was molecularly dated at 65 million years before present.
Science | 2012
Frank Hailer; Verena E. Kutschera; Bjoern M. Hallstroem; Denise Klassert; Steven R. Fain; Jennifer A. Leonard; Ulfur Arnason; Axel Janke
Ancient Bears Polar bears are well known for adapting to their cold Arctic climate. Some recent studies, based on mitochondrial DNA, concluded that they are a relatively young species and that these adaptations occurred quite quickly. Although mitochondrial DNA is regularly used to estimate evolutionary history, it has some well-known drawbacks, including sex-biased dispersal and hybridization. Thus, Hailer et al. (p. 344) looked at neutral genetic data that are distributed more widely across the genome of a relatively large sample of polar, brown, and black bears. Consistent with fossil-based studies, the analysis reveals polar bears as a sister lineage to all brown bears, with an estimated divergence time of 300,000 to 900,000 years ago. Thus, polar bears are indeed of a more ancient lineage, and more recent estimates based on mitochondrial DNA are likely to have been affected by past hybridization with brown bear. Genomic analyses show that polar bears as a species are older and genetically more distinct than previously estimated. Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.
Journal of Molecular Evolution | 1998
Ulfur Arnason; Anette Gullberg; Axel Janke
Abstract. The complete mitochondrial DNA (mtDNA) molecule of the hamadryas baboon, Papio hamadryas, was sequenced and included in a molecular analysis of 24 complete mammalian mtDNAs. The particular aim of the study was to time the divergence between Cercopithecoidea and Hominoidea. That divergence, set at 30 million years before present (MYBP) was a fundamental reference for the original proposal of recent hominoid divergences, according to which the split among gorilla, chimpanzee, and Homo took place 5 MYBP. In the present study the validity of the postulated 30 MYBP dating of the Cercopithecoidea/Hominoidea divergence was examined by applying two independent nonprimate molecular references, the divergence between artiodactyls and cetaceans set at 60 MYBP and that between Equidae and Rhinocerotidae set at 50 MYBP. After calibration for differences in evolutionary rates, application of the two references suggested that the Cercopithecoidea/Hominoidea divergence took place >50 MYBP. Consistent with the marked shift in the dating of the Cercopithecoidea/Hominoidea split, all hominoid divergences receive a much earlier dating. Thus the estimated date of the divergence between Pan (chimpanzee) and Homo is 10–13 MYBP and that between Gorilla and the Pan/Homo linage ≈17 MYBP. The same datings were obtained in an analysis of clocklike evolving genes. The findings show that recalculation is necessary of all molecular datings based directly or indirectly on a Cercopithecoidea/Hominoidea split 30 MYBP.
Journal of Mammalian Evolution | 1994
David M. Irwin; Ulfur Arnason
The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.
Journal of Molecular Evolution | 1996
Ulfur Arnason; Anette Gullberg; Axel Janke; Xiufeng Xu
We have examined and dated primate divergences by applying a newly established molecular/paleontological reference, the evolutionary separation between artiodactyls and cetaceans anchored at 60 million years before present (MYBP). Owing to the morphological transformations coinciding with the transition from terrestrial to aquatic (marine) life and the large body size of the animals (which makes their fossils easier to find), this reference can be defined, paleontologically, within much narrower time limits compared to any local primate calibration marker hitherto applied for dating hominoid divergences. Application of the artiodactyl/cetacean reference (A/C-60) suggests that hominoid divergences took place much earlier than has been concluded previously. According to a homogenous-rate model of sequence evolution, the primary hominoid divergence, i.e., that between the families Hylobatidae (gibbons) and Hominidae, was dated at ≈36 MYBP. The corresponding dating for the divergence betweenPongo (orangutan) andGorilla-Pan (chimpanzee)-Homo is ≈24.5 MYBP, that forGorilla vsHomo-Pan is ≈18 MYBP, and that forHomo vsPan ≈13.5 MYBP. The split between Sumatran and Bornean orangutans was dated at ≈10.5 MYBP and that between the common and pygmy chimpanzees at ≈7 MYBP. Analyses of a single gene (cytochromeb) suggest that the divergence within the Catarrhini, i.e., between Hominoidea and Old World monkeys (Cercopithecoidea), took place >40 MYBP; that within the Anthropoidea, i.e., between Catarrhini and Platyrrhini (New World monkeys), >60 MYBP; and that between Anthropoidea and Prosimii (lemur), ≈80 MYBP. These separation times are about two times more ancient than those applied previously as references for the dating of hominoid divergences. The present findings automatically imply a much slower evolution in hominoid DNA (both mitochondrial and nuclear) than commonly recognized.
Journal of Molecular Evolution | 1993
Ulfur Arnason; Anette Gullberg
The sequence of the mitochondrial DNA (mtDNA) molecule of the blue whale (Balaenoptera musculus) was determined. The molecule is 16,402 by long and its organization conforms with that of other eutherian mammals. The molecule was compared with the mtDNA of the congeneric fin whale (B. physalus). It was recently documented that the two species can hybridize and that male offspring are infertile whereas female offspring may be fertile. The present comparison made it possible to determine the degree of mtDNA difference that occurs between two species that are not completely separated by hybridization incompatibility. The difference between the complete mtDNA sequences was 7.4%. Lengths of peptide coding genes were the same in both species. Except for a small portion of the control region, disruption in alignment was usually limited to insertion/deletion of a single nucleotide. Nucleotide differences between peptide coding genes ranged from 7.1 to 10.5%, and difference at the inferred amino acid level was 0.0–7.9%. In the rRNA genes the mean transition difference was 3.8%. This figure is similar in degree to the difference (3.4%) between the 12S rRNA gene of humans and the chimpanzee. The mtDNA differences between the two whale species, involving both peptide coding and rRNA genes, suggest an evolutionary separation of ⩾5 million years. Although hybridization between more distantly related mammalian species may not be excluded, it is probable that the blue and fin whales are nearly as different in their mtDNA sequences as hybridizing mammal species may be.