Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulisse Munari is active.

Publication


Featured researches published by Ulisse Munari.


Scopus | 2006

The radial velocity experiment (RAVE): First data release

M. Steinmetz; A. Siebert; Harry Enke; C. Boeche; Andreas Kelz; R-D Scholz; Von Berlepsch R; Tomaž Zwitter; U. Jauregi; L. Mijovic; Daniel J. Eisenstein; Fred G. Watson; Quentin A. Parker; D. Burton; Cjp Cass; J. A. Dawe; Kristin Fiegert; Malcolm Hartley; K. S. Russell; Will Saunders; Joss Bland-Hawthorn; Kenneth C. Freeman; Megan Williams; Ulisse Munari; Massimo Fiorucci; A. Siviero; R. Sordo; R. Campbell; George M. Seabroke; G. Gilmore

We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory. The RAVE program started in 2003, obtaining medium-resolution spectra (median R 1⁄4 7500) in the Ca-triplet region (8410–8795 8) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9 < I < 12. The first data release is described in this paper and contains radial velocities for 24,748 individual stars (25,274 measurements when including reobservations). Those data were obtained on 67 nights between 2003 April 11 and 2004 April 3. The total sky coverage within this data release is 4760 deg. The average signal-to-noise ratio of the observed spectra is 29.5, and 80% of the radial velocities have uncertainties better than 3.4 km s . Combining internal errors and zero-point errors, the mode is found to be 2 km s . Repeat observations are used to assess the stability of our radial velocity solution, resulting in a variance of 2.8 km s . We demonstrate that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio. The RAVE radial velocities are complemented in the data release with proper motions from Starnet 2.0, Tycho-2, and SuperCOSMOS, in addition to photometric data from the major optical and infrared catalogs (Tycho-2, USNO-B, DENIS, and the TwoMicron All Sky Survey). The data release can be accessed via the RAVE Web site.


Monthly Notices of the Royal Astronomical Society | 2007

The RAVE survey: constraining the local Galactic escape speed

M. Smith; Gregory R. Ruchti; Amina Helmi; Rosemary F. G. Wyse; Jon P. Fulbright; Kenneth C. Freeman; Julio F. Navarro; George M. Seabroke; Matthias Steinmetz; Mary E K Williams; Olivier Bienayme; James Binney; Joss Bland-Hawthorn; Walter Dehnen; Brad K. Gibson; Gerard Gilmore; Eva K. Grebel; Ulisse Munari; Quentin A. Parker; R.-D. Scholz; Arnaud Siebert; Fred G. Watson; Tomaž Zwitter

We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high-velocity stars from the RAVE survey and two previously published data sets. We use cosmological simulations of disc galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range 498 <v(esc) <608 km s(-1) (90 per cent confidence), with a median likelihood of 544 km s(-1). The fact that v(esc)(2) is significantly greater than 2v(circ)(2) (where v(circ) = 220 km s(-1) is the local circular velocity) implies that there must be a significant amount of mass exterior to the solar circle, that is, this convincingly demonstrates the presence of a dark halo in the Galaxy. We use our constraints on v(esc) to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of 1.42(-0.54)(+1.14) x 10(12) M-circle dot and virial radius of (90 per cent confidence). For this model the circular velocity at the virial radius is 142(-21)(+31) km s(-1). Although our halo masses are model dependent, we find that they are in good agreement with each other.


The Astronomical Journal | 2006

THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE

Arnaud Siebert; Megan Williams; A. Siviero; C. Boeche; M. Steinmetz; Jon P. Fulbright; Ulisse Munari; Tomaž Zwitter; Fred G. Watson; R. F. G. Wyse; R. S. de Jong; Harry Enke; Borja Anguiano; D. Burton; C. J. P. Cass; Kristin Fiegert; Malcolm Hartley; A. Ritter; K. S. Russel; M. Stupar; Olivier Bienayme; Kenneth C. Freeman; G. Gilmore; Eva K. Grebel; Amina Helmi; Julio F. Navarro; James Binney; Joss Bland-Hawthorn; R. Campbell; Benoit Famaey

We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.


Astronomy and Astrophysics | 2005

An extensive library of 2500-10 500 A synthetic spectra

Ulisse Munari; R. Sordo; F. Castelli; T. Zwitter

We present a complete library of synthetic spectra based on Kurucz’s codes that covers the 2500–10 500 A wavelength range at resolving powers RP = 20 000, 11 500 (≡GAIA), 8500 (≡RAVE), 2000 (≡SLOAN) and uniform dispersions of 1 and 10 A/pix. The library maps the whole HR diagram, exploring 51 288 combinations of atmospheric parameters spanning the ranges: 3500 ≤ Teff ≤ 47 500 K, 0.0 ≤ log g ≤ 5.0, −2.5 ≤ [M/H] ≤ 0.5, [α/Fe] = 0.0,+0.4, ξ = 1, 2, 4 km s −1 ,0 ≤ Vrot ≤ 500 km s −1 . The spectra are available both as absolute fluxes as well as continuum normalized. Performance tests and spectroscopic applications of the library are discussed, including automatic classification of data from spectroscopic surveys like RAVE, SLOAN, GAIA. The entire library of synthetic spectra is accessible via the web.


The Astronomical Journal | 2008

The Radial Velocity Experiment (RAVE)

M. Steinmetz; Tomaž Zwitter; A. Siebert; Fred G. Watson; Kenneth C. Freeman; Ulisse Munari; R. Campbell; Megan Williams; George M. Seabroke; Rosemary F. G. Wyse; Q. A. Parker; Olivier Bienayme; S. Roeser; Brad K. Gibson; Gerard Gilmore; Eva K. Grebel; Julio F. Navarro; D. Burton; C. J. P. Cass; J. A. Dawe; Kristin Fiegert; Malcolm Hartley; K. S. Russell; Will Saunders; Harry Enke; Jeremy Bailin; James Binney; Joss Bland-Hawthorn; C. Boeche; Walter Dehnen

We present the second data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity, and rotational velocity) of up to one million stars using the 6dF multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE program started in 2003, obtaining medium resolution specUniversity of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia Astrophysikalisches Institut Potsdam, Potsdam, Germany Observatoire de Strasbourg, Strasbourg, France INAF, Osservatorio Astronomico di Padova, Sede di Asiago, Italy RSAA, Australian national University, Canberra, Australia Anglo Australian Observatory, Sydney, Australia Johns Hopkins University, Baltimore MD, USA Macquarie University, Sydney, Australia Institute of Astronomy, University of Cambridge, UK e2v Centre for Electronic Imaging, School of Engineering and Design, Brunel University, Uxbridge, UK Astronomisches Rechen-Institut, Center for Astronomy of the University of Heidelberg, Heidelberg, Germany Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands University of Victoria, Victoria, Canada Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Australia Rudolf Pierls Center for Theoretical Physics, University of Oxford, UK Institute of Astronomy, School of Physics, University of Sydney, NSW 2006, Australia Sterrewacht Leiden, University of Leiden, Leiden, the Netherlands University of Leicester, Leicester, UK MPI fuer extraterrestrische Physik, Garching, Germany University of Central Lancashire, Preston, UK University of Rochester, Rochester NY, USA University of Edinburgh, Edinburgh, UK


Monthly Notices of the Royal Astronomical Society | 2015

The GALAH survey: Scientific motivation

G. M. De Silva; Kenneth C. Freeman; Joss Bland-Hawthorn; Sarah L. Martell; E. Wylie De Boer; Martin Asplund; Stefan C. Keller; Sanjib Sharma; Daniel B. Zucker; Tomaž Zwitter; Borja Anguiano; Carlos Bacigalupo; D. Bayliss; M.A. Beavis; Maria Bergemann; Simon Campbell; R. Cannon; Daniela Carollo; Luca Casagrande; Andrew R. Casey; G. S. Da Costa; Valentina D'Orazi; Aaron Dotter; Ly Duong; Alexander Heger; Michael J. Ireland; Prajwal R. Kafle; Janez Kos; John C. Lattanzio; Geraint F. Lewis

The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ~ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.


Monthly Notices of the Royal Astronomical Society | 2013

The wobbly Galaxy: kinematics north and south with RAVE red-clump giants

Megan Williams; M. Steinmetz; James Binney; Arnaud Siebert; Harry Enke; B. Famaey; Ivan Minchev; R. S. de Jong; C. Boeche; Kenneth C. Freeman; Olivier Bienayme; Joss Bland-Hawthorn; B. K. Gibson; G. Gilmore; Eva K. Grebel; Amina Helmi; G. Kordopatis; Ulisse Munari; Julio F. Navarro; Quentin A. Parker; George M. Seabroke; Sanjib Sharma; A. Siviero; Fred G. Watson; R. F. G. Wyse; T. Zwitter

The RAdial Velocity Experiment survey, combined with proper motions and distance estimates, can be used to study in detail stellar kinematics in the extended solar neighbourhood (solar suburb). Using 72 365 red-clump stars, we examine the mean velocity components in 3D between 6 <R <10 kpc and -2 <Z <2 kpc, concentrating on north-south differences. Simple parametric fits to the (R, Z) trends for Vφ and the velocity dispersions are presented. We confirm the recently discovered gradient in mean Galactocentric radial velocity, VR, finding that the gradient is marked below the plane (δ/δR = -8 km s-1 kpc-1 for Z <0, vanishing to zero above the plane), with a Z gradient thus also present. The vertical velocity, VZ, also shows clear, large-amplitude (|VZ| = 17 km s-1) structure, with indications of a rarefaction-compression pattern, suggestive of wave-like behaviour. We perform a rigorous error analysis, tracing sources of both systematic and random errors. We confirm the north-south differences in VR and VZ along the line of sight, with the VR estimated independent of the proper motions. The complex three-dimensional structure of velocity space presents challenges for future modelling of the Galactic disc, with the Galactic bar, spiral arms and excitation of wave-like structures all probably playing a role.


Nature | 2003

An energetic stellar outburst accompanied by circumstellar light echoes

Howard E. Bond; Arne A. Henden; Zoltan G. Levay; Nino Panagia; W. B. Sparks; Sumner G. Starrfield; R. Mark Wagner; Romano L. M. Corradi; Ulisse Munari

Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of ∼104. Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation.


Astronomy and Astrophysics | 2014

The RAVE survey: the Galactic escape speed and the mass of the Milky Way

Tilmann Piffl; C. Scannapieco; James Binney; M. Steinmetz; R.-D. Scholz; Megan Williams; R. S. de Jong; G. Kordopatis; G. Matijevic; Olivier Bienayme; Joss Bland-Hawthorn; C. Boeche; Kenneth C. Freeman; B. K. Gibson; G. Gilmore; Eva K. Grebel; Amina Helmi; Ulisse Munari; Julio F. Navarro; Quentin A. Parker; George M. Seabroke; Fred G. Watson; R. F. G. Wyse; Tomaž Zwitter

We made new estimates of the Galactic escape speed at various Galactocentric radii using the latest data release of the RAdial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database that is larger by a factor of 10, as well as reliable distance estimates for almost all stars. Our analysis is based on statistical analysis of a rigorously selected sample of 90 highvelocity halo stars from RAVE and a previously published data set. We calibrated and extensively tested our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii R340, is 533 +54 −41 km s −1 (90% confidence), with an additional 4% systematic uncertainty, where R340 is the Galactocentric radius encompassing a mean overdensity of 340 times the critical density for closure in the Universe. From the escape speed we further derived estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity, the latter profile yields a significantly higher mass than the uncontracted halo, but if we instead use the statistics for halo concentration parameters in large cosmological simulations as a constraint, we find very similar masses for both models. Our best estimate for M340, the mass interior to R340 (dark matter and baryons), is 1.3 +0.4 −0.3 × 10 12 M� (corresponds to M200 = 1.6 +0.5 −0.4 × 10 12 M� ). This estimate is in good agreement with recently published, independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy LeoI.


Astronomy and Astrophysics | 2002

The mysterious eruption of V838 Mon

Ulisse Munari; Arne A. Henden; S. Kiyota; D. Laney; F. Marang; T. Zwitter; Romano L. M. Corradi; S. Desidera; P. M. Marrese; E. Giro; Federico Boschi; M. B. Schwartz

V838 Mon is marking one of the most mysterious stellar outbursts on record. The spectral energy distribution of the progenitor resembles an under-luminous F main sequence star (at V =1 5:6 mag), that erupted into a cool supergiant following a complex and multi-maxima lightcurve (peaking at V =6 :7 mag). The outburst spectrum show BaII, LiI and lines of several s elements, with wide P-Cyg proles and a moderate and retracing emission in the Balmer lines. A light-echo discovered expanding around the object helped to constrain the distance (d = 790 30 pc), providing MV =+ 4:45 in quiescence and MV = 4:35 at optical maximum (somewhat dependent on the still uncertain EB V =0 :5 reddening). The general outburst trend is toward lower temperatures and larger luminosities, and continuing so at the time of writing. The object properties conflict with a classication within already existing categories: the progenitor was not on a post-AGB track and thus the similarities with the born-again AGB stars FG Sge, V605 Aql and Sakurais object are limited to the cool giant spectrum at maximum; the cool spectrum, the moderate wind velocity (500 km s 1 and progressively reducing) and the monotonic decreasing of the low ionization condition argues against a classical nova scenario. The closest similarity is with a star that erupted into an M-type supergiant discovered in M 31 by Rich et al. (1989), that became however much brighter by peaking at MV = 9:95, and with V4332 Sgr that too erupted into an M-type giant (Martini et al. 1999) and that attained a lower luminosity, closer to that of V838 Mon. M 31-RedVar, V4332 Sgr and V838 Mon could be all manifestations of a new class of astronomical objects.

Collaboration


Dive into the Ulisse Munari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Zwitter

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth C. Freeman

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amina Helmi

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar

Fred G. Watson

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge