Ulla König
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulla König.
Spine | 2010
Matti Scholz; Philipp Schleicher; Tanja Eindorf; Frank Friedersdorff; Michael Gelinsky; Ulla König; Andreas Sewing; Norbert P. Haas; Frank Kandziora
Study Design. After anterior cervical discectomy, fusion was radiologically, biomechanically, and histologically assessed in a sheep spine fusion model. Objective. To evaluate the efficacy of a platelet-rich plasma (PRP) application combined with a mineralized collagen matrix (MCM) as an alternative to autologous cancellous iliac crest bone grafts in a spine fusion model. Summary of Background Data. PRP has the ability to stimulate bone and tissue healing. MCM is a recently developed osteoconductive material. Up to now, no comparative evaluation of PRP in combination with a MCM at the cervical spine has been performed in vivo. Methods. Twenty-four sheep (N = 8/group) underwent C3/4 discectomy and fusion: group 1, titanium cage filled with autologous cancellous iliac crest bone graft; group 2, titanium cage filled with MCM; and group 3, titanium cage filled with MCM and PRP. Radiographic evaluation was performed before surgery and after 1, 2, 4, 8, and 12 weeks, respectively. After 12 weeks, fusion sites were evaluated using functional radiographic views and quantitative computed tomographic scans to assess bone mineral density. Furthermore, histomorphologic and histomorphometrical analyses were performed to evaluate fusion. Results. In comparison with the titanium cage group filled with autologous cancellous iliac crest bone grafts representing the control group, MCM-alone group showed a slightly lower fusion rate in the radiographic and the histomorphometrical analysis. The addition of PRP could not enhance this finding. There was no significant difference between MCM and MCM + PRP group in radiologic and histologic findings. Conclusion. The MCM alone is not able to replace autologous bone grafts. Early activation of the platelets by calcium, which is released from mineralized collagen, could be the reason for the insufficient osteoinductive effect of PRP. In consequence, the combined application of mineralized collagen and PRP had no significant osteoinductive effect in this model.
Colloids and Surfaces B: Biointerfaces | 2016
Meike Koenig; Eva Bittrich; Ulla König; Bhadra Lakshmi Rajeev; Martin Müller; Klaus-Jochen Eichhorn; Sabu Thomas; Manfred Stamm; Petra Uhlmann
Polyelectrolyte brushes can be utilized to immobilize enzymes on macroscopic surfaces. This report investigates the influence of the pH value of the surrounding medium on the amount and the activity of enzymes adsorbed to poly(2-vinylpyridine) and poly(acrylic acid) brushes, as well as the creation of thermoresponsive biocatalytically active coatings via the adsorption of enzymes onto a mixed brush consisting of a polyelectrolyte and temperature-sensitive poly(N-isopropylacryl amide). Spectroscopic ellipsometry and attenuated total reflection-Fourier transform infrared spectroscopy are used to monitor the adsorption process. Additionally, infrared spectra are evaluated in terms of the secondary structure of the enzymes. Glucose oxidase is used as a model enzyme, where the enzymatic activity is measured after different adsorption conditions. Poly(acrylic acid) brushes generally adsorb larger amounts of enzyme, while less glucose oxidase is found on poly(2-vinylpyridine), which however exhibits higher specific activity. This difference in activity could be attributed to a difference in secondary structure of the adsorbed enzyme. For glucose oxidase adsorbed to mixed brushes, switching of enzymatic activity between an active state at 20°C and a less active state at 40°C as compared to the free enzyme in solution is observed. However, this switching is strongly depending on pH in mixed brushes of poly(acrylic acid) and poly(N-isopropylacryl amide) due to interactions between the polymers.
Journal of Materials Science: Materials in Medicine | 2014
Ulla König; Anja Lode; Petra B. Welzel; Yuichiro Ueda; Sven Knaack; Anja Henß; Anke Hauswald; Michael Gelinsky
This study intended to evaluate a contemporary concept of scaffolding in bone tissue engineering in order to mimic functions of the extracellular matrix. The investigated approach considered the effect of the glycosaminoglycan heparin on structural and biological properties of a synthetic biomimetic bone graft material consisting of mineralized collagen. Two strategies for heparin functionalization were explored in order to receive a three-component bone substitute material. Heparin was either incorporated during matrix synthesis by mixing with collagen prior to simultaneous fibril reassembly and mineralization (in situ) or added to the matrix after fabrication (a posteriori). Both methods resulted in an incorporation of comparable amounts of heparin, though its distribution in the matrix varied as indicated by TOF-SIMS analyses, and a similar modulation of their protein binding properties. Differential scanning calorimetry revealed that the thermal stability and thereby the degree of crosslinking of the heparinized matrices was increased. However, in contrast to the a posteriori modification, the in situ integration of heparin led to considerable changes of morphology and composition of the matrix: a more open network of collagen fibers yielding a more porous surface and a reduced mineral content were observed. Cell culture experiments with human mesenchymal stem cells (hMSC) revealed a strong influence of the mode of heparin functionalization on cellular processes, as demonstrated for proliferation and osteogenic differentiation of hMSC. Our results indicate that not only heparin per se but also the way of its incorporation into a collagenous matrix determines the cell response. In conclusion, the a posteriori modification was beneficial to support adhesion, proliferation and differentiation of hMSC.
Archive | 2007
Michael Gelinsky; Anne Bernhardt; Marlen Eckert; Thomas Hanke; Ulla König; Anja Lode; Antje Reinstorf; Corina Vater; Anja Walther; Atsuro Yokoyama; Fumio Watari
Extracellular matrix (ECM) of bone tissue consists of a highly organised nanocomposite made of fibrillar collagen type I and calcium phosphate mineral phase hydroxyapatite. We have developed a process to synthesise a material, mimicking bone ECM, and produced several biomaterials out of this mineralised collagen, suitable for use in oral medicine and maxillofacial as well as in general surgery. Synthesis of the nanocomposite, development of the different types of scaffolds, some of their properties, and possible applications are discussed.
European Cells & Materials | 2017
Mandy Quade; Sven Knaack; Weber D; Ulla König; Birgit Paul; Paul Simon; Angela Rösen-Wolff; Schwartz-Albiez R; Michael Gelinsky; Anja Lode
In this study, the effect of heparin-modified collagen type I/hydroxyapatite (HA) nanocomposites on key processes of bone regeneration - osteogenesis and angiogenesis - was characterised in vitro. Two approaches were applied for heparin modification: it was either integrated during material synthesis (in situ) or added to the porous scaffolds after their fabrication (post). Cultivation of human bone marrow-derived stromal cells (hBMSC), in heparin-modified versus heparin-free scaffolds, revealed a positive effect of the heparin modification on their proliferation and osteogenic differentiation. The amount of heparin rather than the method used for modification influenced the cell response favouring proliferation at smaller amount (30 mg/g collagen) and differentiation at larger amount (150 mg/g collagen). A co-culture of human umbilical vein endothelial cells (HUVEC) and osteogenically induced hBMSC was applied for in vitro angiogenesis studies. Pre-vascular networks have formed in the porous structure of scaffolds which were not modified with heparin or modified with a low amount of heparin (30 mg/g collagen). The modification with higher heparin quantities seemed to inhibit tubule formation. Pre-loading of the scaffolds with VEGF influenced formation and stability of the pre-vascular structures depending on the presence of heparin: In heparin-free scaffolds, induction of tubule formation and sprouting was more pronounced whereas heparin-modified scaffolds seemed to promote stabilisation of the pre-vascular structures. In conclusion, the modification of mineralised collagen with heparin by using both approaches was found to modulate cellular processes essential for bone regeneration; the amount of heparin has been identified to be crucial to direct cell responses.
ACS Omega | 2017
Evmorfia Psarra; Ulla König; Martin Müller; Eva Bittrich; Klaus-Jochen Eichhorn; Petra B. Welzel; Manfred Stamm; Petra Uhlmann
Bioinspired materials mimicking the native extracellular matrix environment are promising for biotechnological applications. Particularly, modular biosurface engineering based on the functionalization of stimuli-responsive polymer brushes with peptide sequences can be used for the development of smart surfaces with biomimetic cues. The key aspect of this study is the in situ monitoring and analytical verification of the biofunctionalization process on the basis of three complementary analytical techniques. In situ spectroscopic ellipsometry was used to quantify the amount of chemisorbed GRGDS at both the homopolymer poly(acrylic acid) (PAA) brush and the binary poly(N-isopropylacrylamide) (PNIPAAm)–PAA brushes, which was finally confirmed by an acidic hydrolysis combined with a subsequent reverse-phase high-performance liquid chromatography analysis. In situ attenuated total reflection-Fourier transform infrared spectroscopy provided a step-by-step detection of the biofunctionalization process so that an optimized protocol for the bioconjugation of GRGDS could be identified. The optimized protocol was used to create a temperature-responsive binary brush with a high amount of chemisorbed GRGDS, which is a promising candidate for the temperature-sensitive control of GRGDS presentation in further cell-instructive studies.
Molecular Simulation | 2018
Olga Guskova; Vladyslav Savchenko; Ulla König; Petra Uhlmann; Jens-Uwe Sommer
ABSTRACT Bio-engineered surfaces that aim to induce normal cell behaviour in vitro need to ‘mimic’ the extracellular matrix in a way that allows cell adhesion. In this computational work, several model cell-binding peptides with a minimal cell-adhesive Arg–Gly–Asp sequence are investigated in the bulk as well as immobilised on a soft surface. For this reason, a combination of density functional theory and all-atom MD simulations is applied. The major goal of the modelling is to characterise the accessibility of the cell-recognition motif on the functionalised soft polymer surface. As a reference system, the behaviour of three peptide sequences is preliminarily studied in explicit water simulations. From the analysis of the MD trajectories, the solvent accessible surface area, the distribution of water molecules around peptide groups, the secondary structure and the thermodynamics of hydration are evaluated. Furthermore, each peptide is immobilised on the surface of a homopolymer poly(acrylic acid) brush. During MD simulations, all three peptides approach closely toward PAA brush, and their surface accessibility is characterised. Although the peptides are adsorbed onto the brush, they are not hidden by the polymer strands, with RGD unit accessible on the surface and available for guided cell adhesion.
Chemical Engineering Journal | 2008
Michael Gelinsky; Petra B. Welzel; Paul Simon; Anne Bernhardt; Ulla König
Journal of Biomedical Materials Research Part B | 2005
Atsuro Yokoyama; Michael Gelinsky; Takao Kawasaki; Takao Kohgo; Ulla König; Wolfgang Pompe; Fumio Watari
Journal of Biomedical Materials Research Part A | 2007
Anja Lode; Cornelia Wolf-Brandstetter; Antje Reinstorf; Anne Bernhardt; Ulla König; Wolfgang Pompe; Michael Gelinsky