Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulla Ruotsalainen is active.

Publication


Featured researches published by Ulla Ruotsalainen.


Journal of Clinical Investigation | 1992

Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo.

Pirjo Nuutila; Veikko A. Koivisto; Juhani Knuuti; Ulla Ruotsalainen; Mika Teräs; Merja Haaparanta; J. Bergman; Olof Solin; Liisa-Maria Voipio-Pulkki; Uno Wegelius

Positron emission tomography permits noninvasive measurement of regional glucose uptake in vivo in humans. We employed this technique to determine the effect of FFA on glucose uptake in leg, arm, and heart muscles. Six normal men were studied twice under euglycemic hyperinsulinemic (serum insulin approximately 500 pmol/liter) conditions, once during elevation of serum FFA by infusions of heparin and Intralipid (serum FFA 2.0 +/- 0.4 mmol/liter), and once during infusion of saline (serum FFA 0.1 +/- 0.01 mmol/liter). Regional glucose uptake rates were measured using positron emission tomography-derived 18F-fluoro-2-deoxy-D-glucose kinetics and the three-compartment model described by Sokoloff (Sokoloff, L., M. Reivich, C. Kennedy, M. C. Des Rosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara. 1977. J. Neurochem. 28: 897-916). Elevation of plasma FFA decreased whole body glucose uptake by 31 +/- 2% (1,960 +/- 130 vs. 2,860 +/- 250 mumol/min, P less than 0.01, FFA vs. saline study). This decrease was due to inhibition of glucose uptake in the heart by 30 +/- 8% (150 +/- 33 vs. 200 +/- 28 mumol/min, P less than 0.02), and in skeletal muscles; both when measured in femoral (1,594 +/- 261 vs. 2,272 +/- 328 mumol/min, 25 +/- 13%) and arm muscles (1,617 +/- 411 to 2,305 +/- 517 mumol/min, P less than 0.02, 31 +/- 6%). Whole body glucose uptake correlated with glucose uptake in femoral (r = 0.75, P less than 0.005), and arm muscles (r = 0.69, P less than 0.05) but not with glucose uptake in the heart (r = 0.04, NS). These data demonstrate that the glucose-FFA cycle operates in vivo in both heart and skeletal muscles in humans.


European Journal of Nuclear Medicine and Molecular Imaging | 1997

Bayesian image reconstruction for emission tomography based on median root prior

S. Alenius; Ulla Ruotsalainen

The aim of the present study was to investigate a new type of Bayesian one-step late reconstruction method which utilizes a median root prior (MRP). The method favours images which have locally monotonous radioactivity concentrations. The new reconstruction algorithm was applied to ideal simulated data, phantom data and some patient examinations with PET. The same projection data were reconstructed with filtered back-projection (FBP) and maximum likelihood-expectation maximization (ML-EM) methods for comparison. The MRP method provided good-quality images with a similar resolution to the FBP method with a ramp filter, and at the same time the noise properties were as good as with Hann-filtered FBP images. The typical artefacts seen in FBP reconstructed images outside of the object were completely removed, as was the grainy noise inside the object. Quantitatively, the resulting average regional radioactivity concentrations in a large region of interest in images produced by the MRP method corresponded to the FBP and ML-EM results but at the pixel by pixel level the MRP method proved to be the most accurate of the tested methods. In contrast to other iterative reconstruction methods, e.g. ML-EM, the MRP method was not sensitive to the number of iterations nor to the adjustment of reconstruction parameters. Only the Bayesian parameter β had to be set. The proposed MRP method is much more simple to calculate than the methods described previously, both with regard to the parameter settings and in terms of general use. The new MRP reconstruction method was shown to produce high-quality quantitative emission images with only one parameter setting in addition to the number of iterations.


Psychopharmacology | 1994

Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence

Jarmo Hietala; Curt West; Erkka Syvälahti; Kjell Någren; Pertti Lehikoinen; Pirkko Sonninen; Ulla Ruotsalainen

Striatal D2 dopamine receptor characteristics of nine male patients with alcohol dependence abstinent for 1–68 weeks and eight healthy male volunteers were studied in vivo with positron emission tomography. The selective D2 receptor ligand [11C]raclopride and equilibrium model was used for D2 receptor density (Bmax) and affinity (Kd) measurements. A trend for a decreased striatal D2 receptor density and for reduced D2 receptor affinity was observed in patients with alcohol dependence. These parameters were not statistically significantly different between alcoholics and controls, but the ratio between D2 receptor density and affinity (Bmax/Kd or the striatum/cerebellum ratio from the high specific activity scan) was highly significantly lower in alcoholics than that of controls. In conclusion, the low D2 dopamine receptor Bmax/Kd ratio (striatum/cerebellum ratio) indicates that specific aspects of striatal [11C]raclopride binding in vivo are deviant in alcoholics compared to controls. The result is compatible with a reduced avidity of striatal dopamine D2 receptors in alcoholics, which is in line with the idea that D2 dopaminergic mechanisms are involved in the biology of alcohol dependence in man.


Schizophrenia Research | 1999

Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia

Jarmo Hietala; Erkka Syvälahti; Harry Vilkman; Klaus Vuorio; Viljo Räkköläinen; J. Bergman; Merja Haaparanta; Olof Solin; Mikko Kuoppamäki; Esa Eronen; Ulla Ruotsalainen; Raimo K. R. Salokangas

We have previously reported aberrations in the striatal presynaptic dopamine function in neuroleptic-naive schizophrenic patients compared to healthy controls (Hietala, J., Syvälahti, E., Vuorio, K. et al., 1995. Lancet 346, 1130-1131). In this extended study we explore whether the altered presynaptic dopamine function correlates with the clinical symptomatology in schizophrenia. Striatal dopamine synthesis capacity (6-[18F]fluorodopa (FDOPA) uptake, Ki values) was studied with positron emission tomography in 10 neuroleptic-naive schizophrenic patients and 13 healthy controls. The clinical symptomatology was characterized with the Positive and Negative Symptom Scale (PANSS). The patients had an increased FDOPA uptake in striatum and lacked the asymmetry in caudate FDOPA uptake (p = 0.0005), confirming our earlier results. Left striatal FDOPA uptake (Ki) values correlated negatively with depressive symptoms in a highly significant manner. On the other hand, paranoid symptomatology correlated positively with right putamen FDOPA uptake at a trend level (rho = 0.73, p < 0.02). The lack of asymmetry in caudate Ki values did not associate with any dimension of psychopathology. The major finding in this study is that depressive symptoms in neuroleptic-naive first-admission schizophrenia are associated with low presynaptic dopamine function. This link appears to be hemisphere-related and may have drug-treatment implications, e.g., in prediction of response to D2 receptor blocking antipsychotic drugs. A possible connection between paranoid symptomatology and subcortical hyperdopaminergia is suggested, but this remains to be further verified.


Diabetes | 1995

Gender and Insulin Sensitivity in the Heart and in Skeletal Muscles: Studies Using Positron Emission Tomography

Pirjo Nuutila; M. J. Knuuti; Maija Mäki; Hanna Laine; Ulla Ruotsalainen; Mika Teräs; Merja Haaparanta; Olof Solin; Hannele Yki-Järvinen

Good insulin sensitivity is independently associated with a low risk for coronary heart disease, but it is unclear whether this risk factor differs between men and women. We compared insulin sensitivity of glucose uptake directly in muscle and heart tissues between healthy women (age 29 ± 2 years, body mass index [BMI] 22 ± 1 kg/m2, VO2max 39 ± 4 ml · kg−1 · min−1) and men matched for age (31 ± 2 years), BMI (23 ± 1 kg/m2), and VO2max (44 ± 3 ml · kg−1 · min−1) using [18F]fluoro-2-deoxy-D-glucose and positron emission tomography under hyperinsulinemic (insulin infusion rate 1 mU · kg−1 · min−1) normoglycemic conditions. Whole body insulin sensitivity was 41% greater in women (52 ± 6 μmol · kg body wt−1 · min−1) than in men (37 ± 3 μmol · kg body wt−1 · min−1, P < 0.05). This difference was explained by a 47% greater rate of glucose uptake by femoral muscles (113 ± 10 vs. 77 ± 7 μmol · kg muscle−1 · min−1, women vs. men, P < 0.01). Insulin-stimulated glucose uptake rates in the heart were similar in women (738 ± 58) and men (749 ± 62 μmol · kg muscle−1 · min−1). Femoral muscle insulin sensitivity was closely correlated with whole body insulin sensitivity (r = 0.84, P < 0.001). Gender and VO2max together explained 68% of the variation in femoral muscle glucose uptake. We conclude that women are more sensitive to insulin than equally fit men because of enhanced muscle but not heart insulin sensitivity.


Journal of Cerebral Blood Flow and Metabolism | 1993

Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride.

Juha O. Rinne; Jarmo Hietala; Ulla Ruotsalainen; Erkki Säkö; Arto Laihinen; Kjell Någren; Pertti Lehikoinen; Vesa Oikonen; Erkka Syvälahti

The effect of age on human striatal dopamine D2 receptors was investigated with positron emission tomography (PET) using [11C]raclopride as a radioligand. Twenty-one healthy volunteers aged from 20 to 81 years were studied. An equilibrium method was applied and two separate PET scans with different specific activities of [11C]raclopride were performed. The maximal number of receptors (Bmax) and their dissociation constant (Kd) were calculated using Scatchard analysis. There was an age-dependent decline in the Bmax (r = 0.49; p = 0.02) of striatal D2 receptors while the Kd remained unchanged. The results show that there is an age-related loss of striatal D2 receptors, which, together with other changes in the brain nigrostriatal dopaminergic system, may contribute to extrapyramidal symptoms associated with aging.


Circulation | 1996

Glucose Uptake in the Chronically Dysfunctional but Viable Myocardium

Maija Mäki; Matti Luotolahti; Pirjo Nuutila; Hidehiro Iida; Liisa-Maria Voipio-Pulkki; Ulla Ruotsalainen; Merja Haaparanta; Olof Solin; Jaakko Hartiala; Risto Härkönen; Juhani Knuuti

BACKGROUND The regulation of glucose uptake in the dysfunctional but viable myocardium has not been studied previously in humans. METHODS AND RESULTS Seven patients with an occluded major coronary artery but no previous infarction were studied twice with 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography, once in the fasting state and once during hyperinsulinemic euglycemic clamping. Myocardial blood flow was measured with [(15)O]H2O. The myocardial region beyond an occluded artery that showed stable wall-motion abnormality represented chronically dysfunctional but viable tissue. Six of the patients were later revascularized, and wall-motion recovery was detected in the corresponding regions, which confirmed viability. A slightly reduced myocardial blood flow was detected in the dysfunctional than in the remote myocardial regions (0.81 +/- 0.27 versus 1.02 +/- 0.23 mL x g(-1) x min(-1),P=.036). In the fasting state, glucose uptake was slightly increased in the dysfunctional regions compared with normal myocardium (15 +/- 10 versus 11 +/- 10 micromol/100 g per minute, P=.038). During insulin clamping, a striking increase in glucose uptake by insulin was obtained in both the dysfunctional and the normal regions (72 +/- 22 and 79 +/- 21 micromol/100 g per minute, respectively; P<.001, fasting versus clamping). CONCLUSIONS Contrary to previous suggestions, glucose uptake can be increased strikingly by insulin in chronically dysfunctional but viable myocardium. This demonstrates that insulin control over glucose uptake is preserved in the dysfunctional myocardium and provides a rational basis for metabolic intervention.


Journal of Clinical Investigation | 1996

Role of blood flow in regulating insulin-stimulated glucose uptake in humans. Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography.

Pirjo Nuutila; Maria Raitakari; Hanna Laine; Olli Kirvelä; Timo Takala; Sari Mäkimattila; Olli-Pekka Pitkänen; Ulla Ruotsalainen; Hidehiro Iida; Juhani Knuuti; Hannele Yki-Järvinen

Defects in insulin stimulation of blood flow have been used suggested to contribute to insulin resistance. To directly test whether glucose uptake can be altered by changing blood flow, we infused bradykinin (27 microgram over 100 min), an endothelium-dependent vasodilator, into the femoral artery of 12 normal subjects (age 25+/-1 yr, body mass index 22+/-1 kg/m2) after an overnight fast (n = 5) and during normoglycemic hyperinsulinemic (n = 7) conditions (serum insulin 465+/-11 pmol/liter, 0-100 min). Blood flow was measured simultaneously in both femoral regions using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET), before and during (50 min) the bradykinin infusion. Glucose uptake was measured immediately after the blood flow measurement simultaneously in both femoral regions using [18F]-fluoro-deoxy-glucose ([18F]FDG) and PET. During hyperinsulinemia, muscle blood flow was 58% higher in the bradykinin-infused (38+/-9 ml/kg muscle x min) than in the control leg (24+/-5, P<0.01). Femoral muscle glucose uptake was identical in both legs (60.6+/-9.5 vs. 58.7+/-9.0 micromol/kg x min, bradykinin-infused vs control leg, NS). Glucose extraction by skeletal muscle was 44% higher in the control (2.6+/-0.2 mmol/liter) than the bradykinin-infused leg (1.8+/-0.2 mmol/liter, P<0.01). When bradykinin was infused in the basal state, flow was 98% higher in the bradykinin-infused (58+/-12 ml/kg muscle x min) than the control leg (28+/-6 ml/kg muscle x min, P<0.01) but rates of muscle glucose uptake were identical in both legs (10.1+/-0.9 vs. 10.6+/-0.8 micromol/kg x min). We conclude that bradykinin increases skeletal muscle blood flow but not muscle glucose uptake in vivo. These data provide direct evidence against the hypothesis that blood flow is an independent regulator of insulin-stimulated glucose uptake in humans.


Diabetologia | 1998

Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM

T. Utriainen; Teemu Takala; Matti Luotolahti; Tapani Rönnemaa; Hanna Laine; Ulla Ruotsalainen; Merja Haaparanta; Pirjo Nuutila; Hannele Yki-Järvinen

Summary Skeletal muscle insulin resistance and coronary heart disease (CHD) often precede non-insulin-dependent diabetes mellitus (NIDDM). A recent study showed the myocardium of patients with CHD to be insulin resistant, independent of blood flow. We determined whether myocardial insulin resistance is a feature of NIDDM patients with no CHD. Skeletal muscle and myocardial glucose uptake were determined in 10 patients with NIDDM and 9 age- and weight-matched normal men of similar age and body mass index men using [18F]-2-fluoro-2-deoxy-d-glucose and positron emission tomography under normoglycaemic hyperinsulinaemic conditions. Whole body glucose uptake, as determined by the euglycaemic clamp technique, was significantly lower in the patients with NIDDM (35 ± 3 μmol/kg body weight · min) than the normal subjects (45 ± 3 μmol/kg body weight · min, p < 0.02). Insulin-stimulated femoral muscle glucose uptake was significantly lower in the patients with NIDDM (71 ± 6 μmol/kg muscle · min) than in the normal subjects (96 ± 5 μmol/kg muscle · min, p < 0.01). Whole body glucose uptake was correlated with femoral muscle glucose uptake in the entire group (r = 0.76, p < 0.001), in patients with NIDDM and in normal subjects. Rates of insulin-stimulated myocardial glucose uptake were comparable between the patients with NIDDM (814 ± 76 μmol/kg muscle · min) and the normal subjects (731 ± 63 μmol/kg muscle · min, p > 0.4). Whole body or femoral muscle, and myocardial glucose uptake were not correlated in all subjects, patients with NIDDM or normal subjects. We conclude that insulin resistance of the myocardium is not a feature of uncomplicated NIDDM. [Diabetologia (1998) 41: 555-559]


IEEE Transactions on Medical Imaging | 2007

Genetic Algorithms for Finite Mixture Model Based Voxel Classification in Neuroimaging

Jussi Tohka; Evgeny Krestyannikov; Ivo D. Dinov; Allan MacKenzie Graham; David W. Shattuck; Ulla Ruotsalainen; Arthur W. Toga

Finite mixture models (FMMs) are an indispensable tool for unsupervised classification in brain imaging. Fitting an FMM to the data leads to a complex optimization problem. This optimization problem is difficult to solve by standard local optimization methods, such as the expectation-maximization (EM) algorithm, if a principled initialization is not available. In this paper, we propose a new global optimization algorithm for the FMM parameter estimation problem, which is based on real coded genetic algorithms. Our specific contributions are two-fold: 1) we propose to use blended crossover in order to reduce the premature convergence problem to its minimum and 2) we introduce a completely new permutation operator specifically meant for the FMM parameter estimation. In addition to improving the optimization results, the permutation operator allows for imposing biologically meaningful constraints to the FMM parameter values. We also introduce a hybrid of the genetic algorithm and the EM algorithm for efficient solution of multidimensional FMM fitting problems. We compare our algorithm to the self-annealing EM-algorithm and a standard real coded genetic algorithm with the voxel classification tasks within the brain imaging. The algorithms are tested on synthetic data as well as real three-dimensional image data from human magnetic resonance imaging, positron emission tomography, and mouse brain MRI. The tissue classification results by our method are shown to be consistently more reliable and accurate than with the competing parameter estimation methods

Collaboration


Dive into the Ulla Ruotsalainen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Teräs

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uygar Tuna

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kjell Någren

Odense University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juhani Knuuti

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sari Peltonen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge