Ulrich Bierbach
Wake Forest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrich Bierbach.
Journal of Medicinal Chemistry | 2008
Zhidong Ma; Jayati Roy Choudhury; Marcus W. Wright; Cynthia S. Day; Gilda Saluta; Gregory L. Kucera; Ulrich Bierbach
The cytotoxic complex, [PtCl(Am)2(ACRAMTU)](NO3)2 (1) ((Am)2 = ethane-1,2-diamine, en; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea), is a dual platinating/intercalating DNA binder that, unlike clinical platinum agents, does not induce DNA cross-links. Here, we demonstrate that substitution of the thiourea with an amidine group leads to greatly enhanced cytotoxicity in H460 non-small-cell lung cancer (NSCLC) in vitro and in vivo. Two complexes were synthesized: 4a (Am2 = en) and 4b (Am = NH3), in which N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine replaces ACRAMTU. Complex 4a proves to be a more efficient DNA binder than complex 1 and induces adducts in sequences not targeted by the prototype. Complexes 4a and 4b induce H460 cell kill with IC(50) values of 28 and 26 nM, respectively, and 4b slows tumor growth in a H460 mouse xenograft study by 40% when administered at a dose of 0.5 mg/kg. Compound 4b is the first non-cross-linking platinum agent endowed with promising activity in NSCLC.
Biochemical Pharmacology | 2002
Hemanta Baruah; Christopher L. Rector; Susanne M. Monnier; Ulrich Bierbach
The DNA binding of two novel acridinylthioureas, ACR-NH-(CH(2))(2)-C(S)-NHCH(3) (1) and ACR-N(CH(3))-C(S)-NHCH(3) (3), and their platinum conjugates 4 and 5-derived from [PtCl(2)(en)]-was studied in cell-free model systems using various physico-chemical and biophysical methods. These included: spectrophotometric drug-DNA titrations, ethidium-DNA fluorescence quenching, competitive drug displacement, high-resolution NMR spectroscopy, and unwinding of plasmid DNA monitored by agarose gel electrophoresis. The acridinium cation of 1 showed strong binding to native DNA with K(i)=1.5 x 10(6)M(-1) and an excluded site size (n) of 2bp (McGhee-von Hippel fits of absorbance data). Compound 3 showed no measurable association with DNA. Binding of 1 was an order of magnitude stronger than that of simple 9-methylaminoacridine (2). In alternating copolymers, 1 exhibited slight AT preference. In poly(dA-dT)(2), enhanced association was accompanied by an increased binding site (approximately 3bp), while parameters in poly(dG-dC)(2) were consistent with classical intercalation. Displacement of 1 by distamycin from calf thymus DNA was suggestive of non-intercalating thiourea in 1 being located in the minor groove of the duplex. 1H NMR data of d(GGAGCTCC)(2) modified with 1 indicated intercalative binding of planar acridine, based on upfield shifts of aromatic proton signals relative to those in unbound 1 (Deltadelta approximately equal to -0.5 to -1ppm). Finally, 4 and 5 were found to unwind negatively supercoiled pUC19 plasmid by 21 degrees and 7 degrees per adduct, respectively (electrophoretic gel mobility assays). The difference in DNA binding modes of 4 and 5 is discussed as the ultimate source of the distinctly different biological activities of the conjugates.
Angewandte Chemie | 2013
Song Ding; Xin Qiao; Jimmy Suryadi; Glen S. Marrs; Gregory L. Kucera; Ulrich Bierbach
Adducts in nuclear DNA are the major cause of cancer cell death triggered by platinum-based anticancer drugs.[1] Thus, cellular uptake and accumulation, distribution and trafficking between subcellular compartments and, ultimately, localization to the nucleus are crucial parameters in the mechanism of these agents. Several techniques have been used to monitor intracellular platinum. These include element-specific analytical methods and nondestructive absorption or emission-based imaging techniques, as well as electron microscopy.[2,3] Fluorophore-tagged derivatives have provided insight into uptake, distribution, and intracellular transformation of platinum.[2] Such an approach has to take into consideration the organelle selectivity of the fluorophore, which may vary widely depending on parameters such as molecular weight, partition coefficient (log P), amphiphilic character, and pKa value.[4] Thus, one drawback of modifying platinum drugs with organic fluorophores is that such conjugates may, at least in part, mimic the properties of the reporter molecule.[5] This would be an undesired feature unless the fluorescent group itself is a functionally important part of the bioactive molecule. Likewise, bulky fluorophores may interfere with the DNA binding mechanism of platinum. To circumvent these problems, we have developed a method based on bioorthogonal ligation chemistry, which allowed us to fluorescently label platinum–acridine hybrid agents in lung cancer cells. Here, we report the development of this technique and demonstrate, for the first time, that post-labeling is a powerful tool for detecting DNA-targeted platinum in subcellular structures.
Journal of Biological Inorganic Chemistry | 2004
Margaret C. Ackley; Colin G. Barry; Amanda M. Mounce; Michael C. Farmer; Beth-Erin Springer; Cynthia S. Day; Marcus W. Wright; Susan J. Berners-Price; Suzanne M. Hess; Ulrich Bierbach
The synthesis, cytotoxicity, and nucleoside binding of some platinum–acridinylthiourea conjugates derived from the prototypical compound [PtCl(en)(ACRAMTU)](NO3)2 {”PT-ACRAMTU”; en=ethane-1,2-diamine, ACRAMTU=1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, protonated form} are reported. To establish structure–activity relationships within this class of compounds, systematic changes were made to the thiourea nonleaving group, which links the intercalator to platinum. Three new derivatives of ACRAMTU, one di-, one tri-, and one tetraalkylated, were generated, where the degree of alkylation indicates the number of alkyl groups attached to the SCN2 framework. Subsequent reaction of the tri- and tetraalkylated derivatives with activated [PtCl2(en)] yielded the corresponding platinum conjugates. The dialkylated thiourea gave an unstable complex, which was not included in the studies. The crystal structure of PT-ACRAMTU·MeOH has been determined. In the solid state, one axial position of the square-planar platinum coordination sphere is partially shielded by the bulky thiourea group, providing a strong rationale for the kinetic inertness of the compound. The cytotoxicity of the prototype, the two new conjugates, and cisplatin was assessed in ovarian (A2780, A2780/CP), lung (NCI-H460), and colon (RKO) cancer cell lines using clonogenic survival assays. The derivatives containing trialkylated thiourea groups showed activity similar or superior to cisplatin, with IC50 values in the low micromolar concentration range. The complex modified with the tetraalkylated (bulkiest) thiourea was significantly less active, possibly due to the greatly decreased rate of binding to nucleobase nitrogen (1H NMR spectroscopy), but was most efficient at overcoming cross resistance to cisplatin in A2780/CP. Possible consequences of the reported structural modifications for the mechanism of action of these agents are discussed.
Anti-cancer Agents in Medicinal Chemistry | 2007
Rajsekhar Guddneppanavar; Ulrich Bierbach
The minor-groove is an important receptor for enzymes and proteins involved in the processing and expression of genomic DNA. Small molecules capable of interfering with these processes by virtue of their ability to form adducts within the recognition sequences targeted by these enzymes/proteins have potential applications as cytotoxic and gene-regulating agents. Until recently, the targeting of the minor groove by platinum-based agents has been a widely unexplored opportunity. As part of this focused review on irreversible minor-groove modifying agents acting on adenine-N3, we summarize work performed in our laboratory and by our collaborators on a novel platinum-acridine conjugate, PT-ACRAMTU ([PtCl(en)(ACRAMTU)](NO(3))(2), en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, acridinium cation). The design of this agent as a non-cisplatin type pharmacophore has led to a groundbreaking discovery, the unprecedented intercalator-driven formation of platinum-adenine-N3 adducts in the minor groove of DNA. The minor-groove reactivity of PT-ACRAMTU represents a new paradigm in platinum-DNA interactions, which opens new avenues in the design of platinum-based therapeutics acting by a mechanism different from that of agents currently in clinical use.
Journal of Medicinal Chemistry | 2009
Zhidong Ma; Lu Rao; Ulrich Bierbach
The reactivity of two DNA-targeted platinum-acridine conjugates with cysteine sulfur was studied. The conjugate containing an amidine-NH donor group cis to the chloride leaving group showed considerably reduced reactivity with N-acetylcysteine compared to the prototypical derivative containing a thiourea-S linkage. The opposite scenario has been observed previously in reactions with nucleobase nitrogen. Possible consequences of the unique target-selective tuning of the substitution chemistry for the pharmacodynamic properties and biological activity of these agents are discussed.
Journal of Medicinal Chemistry | 2009
Lauren C. Eiter; Nathan W. Hall; Cynthia S. Day; Gilda Saluta; Gregory L. Kucera; Ulrich Bierbach
Cationic gold(I) complexes containing 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea (1), [AuL(1)](n+) (where L is Cl(-), Br(-), SCN(-), PEt(3), PPh(3), or 1), derived from a class of analogous platinum(II) antitumor agents, have been synthesized. Unlike platinum, gold does not form permanent adducts with DNA, and its complexes are 2 orders of magnitude less cytotoxic in non-small-cell lung cancer cells than the most active platinum-based agent. Instead, several gold analogues show submicromolar and selective antimicrobial activity against Mycobacterium tuberculosis.
Nucleic Acids Research | 2005
Jayati Roy Choudhury; Ulrich Bierbach
The DNA interactions of PT-BIS(ACRAMTU) ([Pt(en)(ACRAMTU)2](NO3)4; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, en = ethylenediamine), a bifunctional platinum–acridine conjugate, have been studied in native and synthetic double-stranded DNAs and model duplexes using various biophysical techniques. These include ethidium-DNA fluorescence quenching and thermal melting experiments, circular dichroism (CD) spectroscopy and plasmid unwinding assays. In addition, the binding mode was studied in a short octamer by NMR spectroscopy in conjunction with molecular modeling. In alternating copolymers, PT-BIS(ACRAMTU) shows a distinct preference for poly(dA-dT)2, which is ∼3-fold higher than that of ACRAMTU. In the ligand-oligomer complex, d(GCTATAGC)2·PT-BIS(ACRAMTU) (complex I*), PT-BIS(ACRAMTU) increases the thermal stability of the B-form host duplex by ΔTm > 30 K (CD and UV melting experiments). The agent unwinds pSP73 plasmid DNA by 44(±2)° per bound molecule, indicating bisintercalative binding. A 2-D NMR study unequivocally demonstrates that PT-BIS(ACRAMTU)s chromophores deeply bisintercalate into the 5′-TA/TA base pair steps in I*, while the platinum linker lies in the minor groove. An AMBER model reflecting the NMR results shows that bracketing of the central AT base pairs in a classical nearest neighbor excluded fashion is feasible. PT-BIS(ACRAMTU) inhibits DNA hydrolysis by BstZ17 I at the enzymes restriction site, GTA↓TAC. Possible consequences for other relevant DNA–protein interactions, such as those involved in TATA-box-mediated transcription initiation and the utility of the platinum-intercalator technology for the design of sequence-specific agents are discussed.
ChemMedChem | 2013
Amanda J. Pickard; Ulrich Bierbach
The transient nucleolus plays a central role in the up‐regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub‐nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic‐acid‐targeted agents, antimetabolites, kinase inhibitors, anti‐inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better‐tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase‐I‐mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G‐quadruplex‐forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach.
Journal of Medicinal Chemistry | 2012
Leigh A. Graham; Jimmy Suryadi; Tiffany K. West; Gregory L. Kucera; Ulrich Bierbach
The synthesis of platinum-acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-231) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and nonsmall cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional-intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum-acridines are discussed.