Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Hassiepen is active.

Publication


Featured researches published by Ulrich Hassiepen.


Nature | 2014

Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide

Eric S. Fischer; Kerstin Böhm; John R. Lydeard; Haidi Yang; Michael B. Stadler; Simone Cavadini; Jane Nagel; Fabrizio C. Serluca; Vincent Acker; Gondichatnahalli M. Lingaraju; Ritesh Bhanudasji Tichkule; Michael Schebesta; William C. Forrester; Markus Schirle; Ulrich Hassiepen; Johannes Ottl; Marc Hild; Rohan Eric John Beckwith; J. Wade Harper; Jeremy L. Jenkins; Nicolas H. Thomä

In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4–RBX1–DDB1–CRBN (known as CRL4CRBN) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4CRBN. Here we present crystal structures of the DDB1–CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4CRBN and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4CRBN. Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4CRBN while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.


Structure | 2006

Structural Basis of Ubiquitin Recognition by the Deubiquitinating Protease USP2.

Martin Renatus; Shirley Gil Parrado; Allan D'Arcy; Ulf Eidhoff; Bernd Gerhartz; Ulrich Hassiepen; Benoit Pierrat; Ralph Riedl; Daniela Vinzenz; Susanne Worpenberg; Markus Kroemer

Summary Deubiquitinating proteases reverse protein ubiquitination and rescue their target proteins from destruction by the proteasome. USP2, a cysteine protease and a member of the ubiquitin specific protease family, is overexpressed in prostate cancer and stabilizes fatty acid synthase, which has been associated with the malignancy of some aggressive prostate cancers. Here, we report the structure of the human USP2 catalytic domain in complex with ubiquitin. Ubiquitin uses two major sites for the interaction with the protease. Both sites are required simultaneously, as shown by USP2 inhibition assays with peptides and ubiquitin mutants. In addition, a layer of ordered water molecules mediates key interactions between ubiquitin and USP2. As several of those molecules are found at identical positions in the previously solved USP7/ubiquitin-aldehyde complex structure, we suggest a general mechanism of water-mediated ubiquitin recognition by USPs.


Biochemical Journal | 2009

The Crystal Structure of Caspase-6, a Selective Effector of Axonal Degeneration.

Renato Baumgartner; Gabriele Meder; Christophe Briand; Arnaud Decock; Allan D'Arcy; Ulrich Hassiepen; Richard Morse; Martin Renatus

Neurodegenerative diseases pose one of the most pressing unmet medical needs today. It has long been recognized that caspase-6 may play a role in several neurodegenerative diseases for which there are currently no disease-modifying therapies. Thus it is a potential target for neurodegenerative drug development. In the present study we report on the biochemistry and structure of caspase-6. As an effector caspase, caspase-6 is a constitutive dimer independent of the maturation state of the enzyme. The ligand-free structure shows caspase-6 in a partially mature but latent conformation. The cleaved inter-domain linker remains partially inserted in the central groove of the dimer, as observed in other caspases. However, in contrast with the structures of other caspases, not only is the catalytic machinery misaligned, but several structural elements required for substrate recognition are missing. Most importantly, residues forming a short anti-parallel beta-sheet abutting the substrate in other caspase structures are part of an elongation of the central alpha-helix. Despite the dramatic structural changes that are required to adopt a canonical catalytically competent conformation, the pre-steady-state kinetics exhibit no lag phase in substrate turnover. This suggests that the observed conformation does not play a regulatory role in caspase-6 activity. However, targeting the latent conformation in search for specific and bio-available caspase-6 inhibitors might offer an alternative to active-site-directed approaches.


Nature | 2016

Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome

Simone Cavadini; Eric S. Fischer; Richard D. Bunker; Alessandro Potenza; Gondichatnahalli M. Lingaraju; Kenneth N. Goldie; Weaam I. Mohamed; Mahamadou Faty; Georg Petzold; Rohan Eric John Beckwith; Ritesh Bhanudasji Tichkule; Ulrich Hassiepen; Wassim Abdulrahman; Radosav S. Pantelic; Syota Matsumoto; Kaoru Sugasawa; Henning Stahlberg; Nicolas H. Thomä

The cullin–RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A–RBX1–DDB1–DDB2 complex (CRL4ADDB2) monitors the genome for ultraviolet-light-induced DNA damage. CRL4ADBB2 is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4ADDB2 and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.


Biochemical Journal | 2009

Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays.

Thorsten Maretzky; Guangli Yang; Ouathek Ouerfelli; Christopher M. Overall; Susanne Worpenberg; Ulrich Hassiepen; Joerg Eder; Carl P. Blobel

ADAM15 (a disintegrin and metalloproteinase 15) is a membrane-anchored metalloproteinase, which is overexpressed in several human cancers and has been implicated in pathological neovascularization and prostate cancer metastasis. Yet, little is known about the catalytic properties of ADAM15. Here, we purified soluble recombinant ADAM15 to test for its ability to cleave a library of peptide substrates. However, we found no processing of any of the peptide substrates tested here, and therefore turned to cell-based assays to characterize the catalytic properties of ADAM15. Overexpression of full-length membrane-anchored ADAM15 or the catalytically inactive ADAM15E-->A together with various membrane proteins resulted in increased release of the extracellular domain of the fibroblast growth factor receptor 2iiib (FGFR2iiib) by ADAM15, but not ADAM15E-->A. This provided a robust assay for a characterization of the catalytic properties of ADAM15 in intact cells. We found that increased expression of ADAM15 resulted in increased FGFR2iiib shedding, but that ADAM15 was not stimulated by phorbol esters or calcium ionophores, two commonly used activators of ectodomain shedding. Moreover, ADAM15-dependent processing of FGFR2iiib was inhibited by the hydroxamate-based metalloproteinase inhibitors marimastat, TAPI-2 and GM6001, and by 50 nM TIMP-3 (tissue inhibitor of metalloproteinases 3), but not by 100 nM TIMP-1, and only weakly by 100 nM TIMP-2. These results define key catalytic properties of ADAM15 in cells and its response to stimulators and inhibitors of ectodomain shedding. A cell-based assay for the catalytic activity of ADAM15 could aid in identifying compounds, which could be used to block the function of ADAM15 in pathological neovascularization and cancer.


Bioorganic & Medicinal Chemistry Letters | 2012

Novel Heterocyclic Dpp-4 Inhibitors for the Treatment of Type 2 Diabetes.

Jon M. Sutton; David E. Clark; Stephen John Dunsdon; Garry Fenton; Amanda Fillmore; Neil Victor Harris; Chris Higgs; Chris A. Hurley; Sussie Lerche Krintel; Robert Edward Mackenzie; Alokesh Duttaroy; Eric Gangl; Wiesia Maniara; Richard Sedrani; Kenji Namoto; Nils Ostermann; Bernd Gerhartz; Finton Sirockin; Jörg Trappe; Ulrich Hassiepen; Daniel Kaspar Baeschlin

Novel deazaxanthine-based DPP-4 inhibitors have been identified that are potent (IC(50) <10nM) and highly selective versus other dipeptidyl peptidases. Their synthesis and SAR are reported, along with initial efforts to improve the PK profile through decoration of the deazaxanthine core. Optimisation of compound 3a resulted in the identification of compound (S)-4i, which displayed an improved in vitro and ADME profile. Further enhancements to the PK profile were possible by changing from the deazahypoxanthine to the deazaxanthine template, culminating in compound 12g, which displayed good ex vivo DPP-4 inhibition and a superior PK profile in rat, suggestive of once daily dosing in man.


Journal of Biomolecular Screening | 2010

Fragment-Based Screening by Biochemical Assays Systematic Feasibility Studies with Trypsin and MMP12

Andreas Boettcher; Simon Ruedisser; P. Erbel; Daniela Vinzenz; Nikolaus Schiering; Ulrich Hassiepen; Pascal Rigollier; Lorenz M. Mayr; Julian Woelcke

Fragment-based screening (FBS) has gained acceptance in the pharmaceutical industry as an attractive approach for the identification of new chemical starting points for drug discovery programs in addition to classical strategies such as high-throughput screening. There is the concern that screening of fragments at high µM concentrations in biochemical assays results in increased false-positive and false-negative rates. Here the authors systematically compare the data quality of FBS obtained by enzyme activity-based fluorescence intensity, fluorescence lifetime, and mobility shift assays with the data quality from surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR) methods. The serine protease trypsin and the matrix metalloprotease MMP12 were selected as model systems. For both studies, 352 fragments were selected each. From the data generated, all 3 biochemical protease assay methods can be used for screening of fragments with low false-negative and low false-positive rates, comparable to those achieved with the SPR-based assays. It can also be concluded that only fragments with a solubility higher than the screening concentration determined by means of NMR should be used for FBS purposes. Extrapolated to 10,000 fragments, the biochemical assays speed up the primary FBS process by approximately a factor of 10 and reduce the protease consumption by approximately 10,000-fold compared to NMR protein observation experiments.


Nature Communications | 2016

Targeted inhibition of the COP9 signalosome for treatment of cancer

Anita Schlierf; Eva Altmann; Jean Quancard; Anne B. Jefferson; René Assenberg; Martin Renatus; Matthew Jones; Ulrich Hassiepen; Michael Schaefer; Michael Kiffe; Andreas Weiss; Christian Wiesmann; Richard Sedrani; Jörg Eder; Bruno Martoglio

The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin–proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelling of CRLs is initiated by CSN-catalysed cleavage of the ubiquitin-like activator NEDD8 from CRLs. Here we describe CSN5i-3, a potent, selective and orally available inhibitor of CSN5, the proteolytic subunit of CSN. The compound traps CRLs in the neddylated state, which leads to inactivation of a subset of CRLs by inducing degradation of their substrate recognition module. CSN5i-3 differentially affects the viability of tumour cell lines and suppresses growth of a human xenograft in mice. Our results provide insights into how CSN regulates CRLs and suggest that CSN5 inhibition has potential for anti-tumour therapy.


Journal of Medicinal Chemistry | 2013

A Novel Class of Oral Direct Renin Inhibitors: Highly Potent 3,5-Disubstituted Piperidines Bearing a Tricyclic P3–P1 Pharmacophore

Nils Ostermann; Simon Ruedisser; Claus Ehrhardt; Werner Breitenstein; Andreas Marzinzik; Edgar Jacoby; Eric Vangrevelinghe; Johannes Ottl; Martin Klumpp; J. Constanze D. Hartwieg; Frederic Cumin; Ulrich Hassiepen; Jörg Trappe; Richard Sedrani; Sabine Geisse; Bernd Gerhartz; Paul Richert; Eric Francotte; Trixie Wagner; Markus Krömer; Takatoshi Kosaka; Randy Lee Webb; Dean F. Rigel; Jürgen Maibaum; Daniel Kaspar Baeschlin

A small library of fragments comprising putative recognition motifs for the catalytic dyad of aspartic proteases was generated by in silico similarity searches within the corporate compound deck based on rh-renin active site docking and scoring filters. Subsequent screening by NMR identified the low-affinity hits 3 and 4 as competitive active site binders, which could be shown by X-ray crystallography to bind to the hydrophobic S3-S1 pocket of rh-renin. As part of a parallel multiple hit-finding approach, the 3,5-disubstituted piperidine (rac)-5 was discovered by HTS using a enzymatic assay. X-ray crystallography demonstrated the eutomer (3S,5R)-5 to be a peptidomimetic inhibitor binding to a nonsubstrate topography of the rh-renin prime site. The design of the potent and selective (3S,5R)-12 bearing a P3(sp)-tethered tricyclic P3-P1 pharmacophore derived from 3 is described. (3S,5R)-12 showed oral bioavailability in rats and demonstrated blood pressure lowering activity in the double-transgenic rat model.


Journal of Biomolecular Screening | 2009

A fluorescence lifetime-based assay for protease inhibitor profiling on human kallikrein 7.

Klaus Doering; Gabriele Meder; Manuela Hinnenberger; Julian Woelcke; Lorenz M. Mayr; Ulrich Hassiepen

Fluorescence lifetime is an intrinsic parameter describing the fluorescence process. Changes in the fluorophores physicochemical environment can lead to changes in the fluorescence lifetime. When used as the readout in biological assays, it is thought to deliver superior results to conventional optical readouts. Hence it has the potential to replace readout technologies currently established in drug discovery such as absorption, luminescence or fluorescence intensity. Here we report the development of an activity assay for human kallikrein 7, a serine protease involved in skin diseases. As a probe, we have selected a blue-fluorescent acridone dye, featuring a remarkably long lifetime that can be quenched by either of the 2 natural amino acids, tyrosine and tryptophan. Incorporating this probe and 1 of the quenching amino acids on either side of the scissile bond of the substrate peptide enables us to monitor the enzymatic activity by quantifying the increase in the fluorescence lifetime signal. A systematic investigation of substrate structures has led to a homogenous, microplate-based, compound profiling assay that yields inhibitory constants down into the single-digit nanomolar range. This type of assay has now been added to our standard portfolio of screening techniques, and is routinely used for compound profiling. ( Journal of Biomolecular Screening 2009:1-9)

Collaboration


Dive into the Ulrich Hassiepen's collaboration.

Researchain Logo
Decentralizing Knowledge