Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Kortz is active.

Publication


Featured researches published by Ulrich Kortz.


Angewandte Chemie | 2011

Hexadecacobalt(II)-Containing Polyoxometalate-Based Single-Molecule Magnet†

Masooma Ibrahim; Yanhua Lan; Bassem S. Bassil; Yixian Xiang; Andreas Suchopar; Annie K. Powell; Ulrich Kortz

Polyoxometalates (POMs) are a remarkable class of inorganic compounds with enormous structural and compositional diversity and potential applications in various fields, such as catalysis, analytical chemistry, magnetism, nanotechnology, and medicine. In particular lacunary heteropolytungstates of the Keggin and Wells–Dawson type are useful inorganic, diamagnetic ligands allowing for encapsulation of various multinuclear metal-oxo assemblies. Examples of such kinds of structurally, catalytically, and magnetically interesting POMs are the manganese-containing derivative {Mn14W36}, [2a] the iron-containing derivatives {Fe9W12}, [3a] {Fe13W36}, [3b,c] {Fe16W48}, [3d] {Fe28W48}, [3e] the nickel-containing derivatives {Ni9W27}, [4a] {Ni8/Ni9W18}, [4b] {Ni12W35}, [4c] and {Ni20W34}, [4d] and the copper-containing derivatives {Cu14W36} [5a] and {Cu20W48X} (X=Cl, Br, I). [5b,c] Some transition-metal-containing polyoxomolybdates are also known, such as {Fe30Mo72}, [6a] {V30Mo72}, [6b] as well as {Co16Mo16} (two types of structures containing 16 cobalt centers, in the form of four tetramers). The class of cobalt-containing POMs was pioneered by Baker and Pope. Meanwhile a large number of POMbased Co complexes with nuclearities ranging from 2 to 16 has been reported. Our group has reported a nona-cobaltcontaining polyanion capped by six antenna-like Co ions in the solid state, as well as several polytungstates containing smaller numbers of cobalt ions. Very recently it was shown that [Co4(H2O)2(PW9O34)2] 10 [9a] is a hydrolytically and oxidatively stable homogeneous water-oxidation catalyst. During the past decade many high-nuclearity transitionmetal-based coordination complexes with interesting electronic and magnetic properties have been prepared. Some cobalt derivatives with nuclearities ranging from 2 to 32 are also known. It is a challenge to encapsulate high-nuclearity magnetic cores in diamagnetic POM shells, in particular by using conventional, soft synthesis methods. We have now succeeded in preparing the tetrameric 36-tungsto-8-phosphate [{Co4(OH)3PO4}4(PW9O34)4] 28 (1), containing 16 cobalt(II) centers (Figure 1).


Angewandte Chemie | 2011

A Planar {Mn19(OH)12}26+ Unit Incorporated in a 60‐Tungsto‐6‐Silicate Polyanion

Bassem S. Bassil; Masooma Ibrahim; Rami Al-Oweini; Marie Asano; Zhenxing Wang; Johan van Tol; N. S. Dalal; K.-Y. Choi; Rosa Ngo Biboum; Bineta Keita; Louis Nadjo; Ulrich Kortz

Polyoxometalates (POMs) are discrete metal–oxo anions of early transition-metals in high oxidation states (e.g. W, Mo, V) and they are usually synthesized in aqueous, acidic medium. Most classical POMs are based on edgeand corner-shared MO6 octahedra. However, the recently discovered POM subclass of noble metalates comprises linked square-planar MO4 units (M = Pd , Au). Lacunary (vacant) POMs can be considered as inorganic, multidentate ligands, and hence they are good candidates for the encapsulation of large, multinuclear dand f-block metal–oxo fragments, sometimes resulting in compounds with interesting magnetic properties. A pioneering result in this area was the synthesis of [Mn12(CH3COO)16(H2O)4O12] (Mn12) by Lis in 1980, which was shown to exhibit single-molecule magnet (SMM) behavior by Gatteschi s group 13 years later. During the past two decades many high-nuclearity, transition-metal based, coordination complexes with interesting electronic and magnetic properties have been prepared. High-nuclearity manganese complexes have been amongst the most studied in this class, and there are examples containing up to 84 manganese ions. 6] To date there are only a few high-nuclearity manganese– oxo-containing POMs, such as {[XW9O34]2[Mn III 4Mn II 2O4(H2O)4]} 12 (X = Si, Ge) and [Mn13Mn O12(PO4)4(PW9O34)4] 31 . Herein we report the synthesis and structure as well as the magnetic and electrochemical properties of a 19 manganese(II) center containing 60-tungsto-6-silicate, [Mn19(OH)12(SiW10O37)6] 34 (1), which was isolated as a hydrated sodium salt, Na34[Mn19(OH)12(SiW10O37)6]·115H2O (Na-1). Single-crystal X-ray diffraction revealed that polyanion 1 consists of a cationic {Mn19(OH)12} 26+ (Mn19) assembly stabilized by six dilacunary [a-SiW10O37] 10 units resulting in a structure with S6 point-group symmetry (Figure 1, top). To the best of our knowledge, 1 is the highest nuclearity manganesecontaining POM known to date. All 19 Mn ions lie in the same plane forming a hexagonal structure based on edgeshared MnO6 octahedra. The Mn II ions in Mn19 are connected by a total of twelve m3-hydroxo bridges, as determined by bond valence sum (BVS) calculations (Supporting Information, Table S1). The discrete Mn19 nanosheet (Figure 1, bottom) is held in place by six dilacunary [a-SiW10O37] 10


Journal of the American Chemical Society | 2008

6-Peroxo-6-Zirconium Crown and Its Hafnium Analogue Embedded in a Triangular Polyanion: [M6(O2)6(OH)6(γ-SiW10O36)3]18− (M = Zr, Hf)

Bassem S. Bassil; Sib Sankar Mal; Michael H. Dickman; Ulrich Kortz; Holger Oelrich; Lorenz Walder

We have synthesized and structurally characterized the unprecedented peroxo-zirconium(IV) containing [Zr6(O2)6(OH)6(gamma-SiW10O36)3]18- (1). Polyanion 1 comprises a cyclic 6-peroxo-6-zirconium core stabilized by three decatungstosilicate units. We have also prepared the isostructural hafnium(IV) analogue [Hf6(O2)6(OH)6(gamma-SiW10O36)3]18- (2). We investigated the acid/base and redox properties of 1 by UV-vis spectroscopy and electrochemistry studies. Polyanion 1 represents the first structurally characterized Zr-peroxo POM with side-on, bridging peroxo units. The simple, one-pot synthesis of 1 and 2 involving dropwise addition of aqueous hydrogen peroxide could represent a general procedure for incorporating peroxo groups into a large variety of transition metal and lanthanide containing POMs.


Angewandte Chemie | 2014

Photocatalytic Water Oxidation by a Mixed‐Valent MnIII3MnIVO3 Manganese Oxo Core that Mimics the Natural Oxygen‐Evolving Center

Rami Al‐Oweini; Andrea Sartorel; Bassem S. Bassil; Mirco Natali; Serena Berardi; Franco Scandola; Ulrich Kortz; Marcella Bonchio

The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi-redox Mn(III)/Mn(IV) manifold that evolves through five electronic states (S(i), where i=0-4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese-substituted tungstosilicate [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-)(Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic-inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3](2+) and S2O8(2-) is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple-hole-accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7%.


Journal of the American Chemical Society | 2010

Mechanistic Insights into Alkene Epoxidation with H2O2 by Ti- and other TM-Containing Polyoxometalates: Role of the Metal Nature and Coordination Environment

Nadya S. Antonova; Jorge J. Carbó; Ulrich Kortz; Oxana A. Kholdeeva; Josep M. Poblet

The oxidation of alkenes by H(2)O(2) catalyzed by Ti(IV)-containing polyoxometalates (POMs) as models of Ti single-site catalysts has been investigated at DFT level and has been compared with other early transition-metal-substituted polyoxometalates. We have studied in detail the reaction mechanism of the C(2)H(4) epoxidation with H(2)O(2) mediated by two different POMs, the Ti-monosubstituted Keggin-type POM [PTi(OH)W(11)O(39)](4-) and the Ti-disubstituted sandwich-type POM [Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)](8-). These species exhibit well-defined 6- and 5-coordinated titanium environments. For both species, the reaction proceeds through a two-step mechanism: (i) the Ti-OH groups activate H(2)O(2) with a moderate energy barrier yielding either Ti-hydroperoxo (Ti(IV)-OOH) or Ti-peroxo (Ti(IV)-OO) intermediate, and (ii) the less stable but more reactive Ti-hydroperoxo species transfers oxygen to alkene to form the epoxide, this latter step being the rate-determining step. The higher activity of the sandwich anion was attributed to the absence of dimer formation, and its higher selectivity to the larger energy cost of homolytic O-O bond breaking in the hydroperoxo intermediate. We also propose several requisites to improve the efficiency of Ti-containing catalysts, including flexible and 5-fold (or lower) coordinated Ti environments, as well as reagent-accessible Ti sites. Calculations on other TM-containing Keggin-type POMs [PTM(OH)W(11)O(39)](4-) (TM = Zr(IV), V(V), Nb(V), Mo(VI), W(VI), and Re(VII)) showed that when we move from the left to the right in the periodic table the formation of the epoxide via peroxo intermediate becomes competitive because of the higher mixing between the orbitals of the TM and the O-O unit.


Chemistry: A European Journal | 2008

Nucleation Process in the Cavity of a 48‐Tungstophosphate Wheel Resulting in a 16‐Metal‐Centre Iron Oxide Nanocluster

Sib Sankar Mal; Michael H. Dickman; Ulrich Kortz; Ana Maria Todea; Alice Merca; Hartmut Bögge; Thorsten Glaser; Achim Müller; Saritha Nellutla; Narpinder Kaur; Johan van Tol; N. S. Dalal; Bineta Keita; Louis Nadjo

The 16-Fe(III)-containing 48-tungsto-8-phosphate [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) (1) has been synthesised and characterised by IR and ESR spectroscopy, TGA, elemental analyses, electrochemistry and susceptibility measurements. Single-crystal X-ray analyses were carried out on Li(4)K(16)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)]66 H(2)O2 KCl (LiK-1, orthorhombic space group Pnnm, a=36.3777(9) A, b=13.9708(3) A, c=26.9140(7) A, and Z=2) and on the corresponding mixed sodium-potassium salt Na(9)K(11)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)].100 H(2)O (NaK-1, monoclinic space group C2/c, a=46.552(4) A, b=20.8239(18) A, c=27.826(2) A, beta=97.141(2) degrees and Z=4). Polyanion 1 contains--in the form of a cyclic arrangement--the unprecedented {Fe(16)(OH)(28)(H(2)O)(4)}(20+) nanocluster, with 16 edge- and corner-sharing FeO(6) octahedra, grafted on the inner surface of the crown-shaped [H(7)P(8)W(48)O(184)](33-) (P(8)W(48)) precursor. The synthesis of 1 was accomplished by reaction of different iron species containing Fe(II) (in presence of O(2)) or Fe(III) ions with the P(8)W(48) anion in aqueous, acidic medium (pH approximately 4), which can be regarded as an assembly process under confined geometries. One fascinating aspect is the possibility to model the uptake and release of iron in ferritin. The electrochemical study of 1, which is stable from pH 1 through 7, offers an interesting example of a highly iron-rich cluster. The reduction wave associated with the Fe(III) centres could not be split in distinct steps independent of the potential scan rate from 2 to 1000 mV s(-1); this is in full agreement with the structure showing that all 16 iron centres are equivalent. Polyanion 1 proved to be efficient for the electrocatalytic reduction of NO(x), including nitrate. Magnetic and variable frequency EPR measurements on 1 suggest that the Fe(III) ions are strongly antiferromagnetically coupled and that the ground state is tentatively spin S=2.


Angewandte Chemie | 2008

Self‐Assembly of a Heteropolyoxopalladate Nanocube: [PdII13AsV8O34(OH)6]8−

Elena V. Chubarova; Michael H. Dickman; Bineta Keita; Louis Nadjo; Frédéric Miserque; Maria Mifsud; Isabel W. C. E. Arends; Ulrich Kortz

(Chemical Equation Presented) Not like the others: A molecular palladium oxide cluster was formed by self-assembly of palladium(II) and arsenic(V) using mild reaction conditions. The resulting heteropolypalladate [Pd II 13AsV 8O34(OH) 6]8- has a distorted cubic shape and edge lengths of about 1 nm. The thirteen PdII ions retain four-coordinate square-planar geometry, in marked contrast to all other known discrete polyoxometalates.


Journal of the American Chemical Society | 2012

Halogen bonding inside a molecular container.

Hamdy S. El-Sheshtawy; Bassem S. Bassil; Khaleel I. Assaf; Ulrich Kortz; Werner M. Nau

The synthetic macrocycle cucurbit[6]uril forms host-guest inclusion complexes with molecular dibromine and diiodine. As evidenced by their crystal structures, the encapsulated dihalogens adapt a tilted axial geometry and are held in place by two different types of halogen-bonding interactions, one with a water molecule (bond distances 2.83 Å for O···Br and 3.10 Å for O···I) and the other one with the ureido carbonyl groups of the molecular container itself (bond distances 3.33 Å for O···Br and 3.49 Å for O···I). While the former is of the conventional type, involving the lone electron pair of an oxygen donor, the latter is perpendicular, involving the π-system of the carbonyl oxygen (N-C═O···X dihedrals ca. 90°). Such perpendicular interactions resemble those observed in protein complexes of halogenated ligands. A statistical analysis of small-molecule crystal structural data, as well as quantum-chemical calculations with urea as a model (MP2/aug-cc-pVDZ-PP), demonstrates that halogen bonding with the π-system of the carbonyl oxygen can become competitive with the commonly favored lone-pair interaction whenever the carbonyl group carries electron-donating substitutents, specifically for ureas, amides, and esters, and particularly when the lone pairs are engaged in orthogonal hydrogen bonding (hX bonds). The calculations further demonstrate that the perpendicular interactions remain significantly attractive also for nonlinear distortions of the O···X-X angle to ca. 140°, the angle observed in the two reported crystal structures. The structural and theoretical data jointly support the assignment of the observed dihalogen-carbonyl contacts as genuine halogen bonds.


Acta Crystallographica Section D-biological Crystallography | 2014

Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal.

Stephan Gerhard Mauracher; Christian Molitor; Rami Al-Oweini; Ulrich Kortz; Annette Rompel

Mushroom tyrosinase isoform abPPO4 (Agaricus bisporus polyphenol oxidase 4) was crystallized by means of an Anderson-type polyoxometalate. The enzyme crystallized as a crystallographic heterodimer containing the zymogen (L-TYR; 64 kDa), the 21 kDa smaller activated form (A-TYR) and the polyoxometalate (POM) within one single crystal in a 1:1:1 ratio.


Inorganic Chemistry | 2009

Heteropoly-13-palladates(II) [Pd(II)(13)(As(V)Ph)(8)O(32)](6-) and [Pd(II)(13)Se(IV)(8)O(32)](6-).

Natalya V. Izarova; Michael H. Dickman; Rosa Ngo Biboum; Bineta Keita; Louis Nadjo; N. S. Dalal; Ulrich Kortz

Two discrete anionic palladium(II)-oxo clusters have been prepared: [Pd(13)(As(V)Ph)(8)O(32)](6-) (1) and [Pd(13)Se(IV)(8)O(32)](6-) (2) were synthesized in one-pot self-assembly reactions of Pd(OAc)(2) with PhAsO(3)H(2) and SeO(2) and characterized by single-crystal X-ray analysis, IR, thermogravimetric analysis, elemental analysis, magnetic and electron paramagnetic resonance measurements, and electrochemistry.

Collaboration


Dive into the Ulrich Kortz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bineta Keita

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis Nadjo

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sib Sankar Mal

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Ali Haider

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Zhengguo Lin

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Rami Al-Oweini

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge