Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Kunzendorf is active.

Publication


Featured researches published by Ulrich Kunzendorf.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury

Andreas Linkermann; Jan Hinrich Bräsen; Maurice Darding; Mi Kyung Jin; Ana Belen Sanz; Jan Ole Heller; Federica De Zen; Ricardo Weinlich; Alberto Ortiz; Henning Walczak; Joel M. Weinberg; Douglas R. Green; Ulrich Kunzendorf; Stefan Krautwald

Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia–reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.


Kidney International | 2012

Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury

Andreas Linkermann; Jan Hinrich Bräsen; Nina Himmerkus; Shuya Liu; Tobias B. Huber; Ulrich Kunzendorf; Stefan Krautwald

Loss of kidney function in renal ischemia/reperfusion injury is due to programmed cell death, but the contribution of necroptosis, a newly discovered form of programmed necrosis, has not been evaluated. Here, we identified the presence of death receptor-mediated but caspase-independent cell death in murine tubular cells and characterized it as necroptosis by the addition of necrostatin-1, a highly specific receptor-interacting protein kinase 1 inhibitor. The detection of receptor-interacting protein kinase 1 and 3 in whole-kidney lysates and freshly isolated murine proximal tubules led us to investigate the contribution of necroptosis in a mouse model of renal ischemia/reperfusion injury. Treatment with necrostatin-1 reduced organ damage and renal failure, even when administered after reperfusion, resulting in a significant survival benefit in a model of lethal renal ischemia/reperfusion injury. Unexpectedly, specific blockade of apoptosis by zVAD, a pan-caspase inhibitor, did not prevent the organ damage or the increase in urea and creatinine in vivo in renal ischemia/reperfusion injury. Thus, necroptosis is present and has functional relevance in the pathophysiological course of ischemic kidney injury and shows the predominance of necroptosis over apoptosis in this setting. Necrostatin-1 may have therapeutic potential to prevent and treat renal ischemia/reperfusion injury.


Journal of Immunology | 2002

Cutting Edge: CCR7+ and CCR7− Memory T Cells Do Not Differ in Immediate Effector Cell Function

Heike Unsoeld; Stefan Krautwald; David Voehringer; Ulrich Kunzendorf; Hanspeter Pircher

It has been proposed that expression of the chemokine receptor CCR7 represents a defining factor for nonpolarized central (CCR7+) and polarized effector memory (CCR7−) T cells. In this study, we have tested this hypothesis using in vivo-activated T cells from P14 and SMARTA TCR-transgenic (tg) mice specific for MHC class I- and II-restricted epitopes of the lymphocytic choriomeningitis virus (LCMV) glycoprotein. CCR7 cell surface expression on TCR-tg cells was monitored with a CC chemokine ligand 19-Ig fusion protein. CC chemokine ligand 19-Ig staining separated TCR-tg cells activated by LCMV infection into CCR7− and CCR7+ effector/memory T cell populations. Nonetheless, both T cell populations isolated from spleen and liver produced identical amounts of IFN-γ after short-term Ag stimulation. Furthermore, CCR7+ and CCR7− CD8 TCR-tg cells from LCMV-infected mice exhibited similar lytic activity against LCMV peptide-coated target cells. These results question the proposed concept of differential effector cell function of CCR7+ and CCR7− memory T cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Synchronized renal tubular cell death involves ferroptosis

Andreas Linkermann; Rachid Skouta; Nina Himmerkus; Shrikant R. Mulay; Christin Dewitz; Federica De Zen; Ágnes Prókai; Gabriele Zuchtriegel; Fritz Krombach; Patrick Simon Welz; Ricardo Weinlich; Tom Vanden Berghe; Peter Vandenabeele; Manolis Pasparakis; Markus Bleich; Joel M. Weinberg; Christoph A. Reichel; Jan Hinrich Bräsen; Ulrich Kunzendorf; Hans-Joachim Anders; Brent R. Stockwell; Douglas R. Green; Stefan Krautwald

Significance Cell death by regulated necrosis causes tremendous tissue damage in a wide variety of diseases, including myocardial infarction, stroke, sepsis, and ischemia–reperfusion injury upon solid organ transplantation. Here, we demonstrate that an iron-dependent form of regulated necrosis, referred to as ferroptosis, mediates regulated necrosis and synchronized death of functional units in diverse organs upon ischemia and other stimuli, thereby triggering a detrimental immune response. We developed a novel third-generation inhibitor of ferroptosis that is the first compound in this class that is stable in plasma and liver microsomes and that demonstrates high efficacy when supplied alone or in combination therapy. Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia–reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.


Journal of The American Society of Nephrology | 2014

Regulated Cell Death in AKI

Andreas Linkermann; Guochun Chen; Guie Dong; Ulrich Kunzendorf; Stefan Krautwald; Zheng Dong

AKI is pathologically characterized by sublethal and lethal damage of renal tubules. Under these conditions, renal tubular cell death may occur by regulated necrosis (RN) or apoptosis. In the last two decades, tubular apoptosis has been shown in preclinical models and some clinical samples from patients with AKI. Mechanistically, apoptotic cell death in AKI may result from well described extrinsic and intrinsic pathways as well as ER stress. Central converging nodes of these pathways are mitochondria, which become fragmented and sensitized to membrane permeabilization in response to cellular stress, resulting in the release of cell death-inducing factors. Whereas apoptosis is known to be regulated, tubular necrosis was thought to occur by accident until recent work unveiled several RN subroutines, most prominently receptor-interacting protein kinase-dependent necroptosis and RN induced by mitochondrial permeability transition. Additionally, other cell death pathways, like pyroptosis and ferroptosis, may also be of pathophysiologic relevance in AKI. Combination therapy targeting multiple cell-death pathways may, therefore, provide maximal therapeutic benefits.


Molecular Medicine | 2012

Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α–Induced Shock

Andreas Linkermann; Jan Hinrich Bräsen; Federica De Zen; Ricardo Weinlich; Reto A. Schwendener; Douglas R. Green; Ulrich Kunzendorf; Stefan Krautwald

Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.


American Journal of Transplantation | 2013

Necroptosis in Immunity and Ischemia-Reperfusion Injury

Andreas Linkermann; M. J. Hackl; Ulrich Kunzendorf; Henning Walczak; Stefan Krautwald; Anthony M. Jevnikar

Transplantation is invariably associated with ischemia–reperfusion injury (IRI), inflammation and rejection. Resultant cell death has morphological features of necrosis but programmed cell death has been synonymous with apoptosis until pathways of regulated necrosis (RN) have been described. The best‐studied RN pathway, necroptosis, is triggered by perturbation of caspase‐8‐mediated apoptosis and depends on receptor‐interacting protein kinases 1 and 3 (RIPK1/RIPK3) as well as mixed linage kinase domain like to form the necroptosome. The release of cytosolic content and cell death‐associated molecular patterns (CDAMPs) can trigger innate and promote adaptive immune responses. Thus, the form of cell death can substantially influence alloimmunity and graft survival. Necroptosis is a key element of IRI, and RIPK1 interference by RN‐specific inhibitors such as necrostatin‐1 protects from IRI in kidney, heart and brain. Necroptosis may be a general mechanism in response to other forms of inflammatory organ injury, and will likely emerge as a promising target in solid organ transplantation. As second‐generation RIPK1 and RIPK3 inhibitors become available, clinical trials for the prevention of delayed graft function and attenuation of allograft rejection‐mediated injury will emerge. These efforts will accelerate upon further identification of critical necroptosis‐triggering receptor(s).


Nephrology Dialysis Transplantation | 2012

Programmed necrosis in acute kidney injury

Andreas Linkermann; Federica De Zen; Joel M. Weinberg; Ulrich Kunzendorf; Stefan Krautwald

Programmed cell death (PCD) had been widely used synonymously to caspase-mediated apoptosis until caspase-independent cell death was described. Identification of necrosis as a regulated process in ischaemic conditions has recently changed our understanding of PCD. At least three pathways of programmed necrosis (PN) have been identified. First, receptor-interacting protein kinase 3 (RIP3)-dependent necroptosis causes organ failure following stroke, myocardial infarction and renal ischaemia/reperfusion injury. Necroptosis can be mediated either by a large intracellular caspase-8-containing signalling complex called the ripoptosome or by the RIP1-/RIP3-containing necroptosome and is controlled by a caspase-8/FLICE inhibitory protein(long) heterodimer at least in the latter case. Second, mitochondrial permeability transition mediates apoptotic or necrotic stimuli and depends on the mitochondrial protein cyclophilin D. The third PN pathway involves the poly(ADP-ribose) polymerase-calpain axis that contributes to acute kidney injury (AKI). Preclinical interference with the PN pathways therefore raises expectations for the future treatment of ischaemic conditions. In this brief review, we aim to summarize the clinically relevant PCD pathways and to transfer the basic science data to settings of AKI. We conclude that pathologists were quite right to refer to ischaemic kidney injury as acute tubular necrosis.


Journal of The American Society of Nephrology | 2013

The RIP1-Kinase Inhibitor Necrostatin-1 Prevents Osmotic Nephrosis and Contrast-Induced AKI in Mice

Andreas Linkermann; Jan Ole Heller; Ágnes Prókai; Joel M. Weinberg; Federica De Zen; Nina Himmerkus; Attila J. Szabó; Jan Hinrich Bräsen; Ulrich Kunzendorf; Stefan Krautwald

The pathophysiology of contrast-induced AKI (CIAKI) is incompletely understood due to the lack of an appropriate in vivo model that demonstrates reduced kidney function before administration of radiocontrast media (RCM). Here, we examine the effects of CIAKI in vitro and introduce a murine ischemia/reperfusion injury (IRI)-based approach that allows induction of CIAKI by a single intravenous application of standard RCM after injury for in vivo studies. Whereas murine renal tubular cells and freshly isolated renal tubules rapidly absorbed RCM, plasma membrane integrity and cell viability remained preserved in vitro and ex vivo, indicating that RCM do not induce apoptosis or regulated necrosis of renal tubular cells. In vivo, the IRI-based CIAKI model exhibited typical features of clinical CIAKI, including RCM-induced osmotic nephrosis and increased serum levels of urea and creatinine that were not altered by inhibition of apoptosis. Direct evaluation of renal morphology by intravital microscopy revealed dilation of renal tubules and peritubular capillaries within 20 minutes of RCM application in uninjured mice and similar, but less dramatic, responses after IRI pretreatment. Necrostatin-1 (Nec-1), a specific inhibitor of the receptor-interacting protein 1 (RIP1) kinase domain, prevented osmotic nephrosis and CIAKI, whereas an inactive Nec-1 derivate (Nec-1i) or the pan-caspase inhibitor zVAD did not. In addition, Nec-1 prevented RCM-induced dilation of peritubular capillaries, suggesting a novel role unrelated to cell death for the RIP1 kinase domain in the regulation of microvascular hemodynamics and pathophysiology of CIAKI.


Kidney International | 2011

Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure

Andreas Linkermann; Nina Himmerkus; Lars Rölver; Kirsten A. Keyser; Philip Steen; Jan-Hinrich Bräsen; Markus Bleich; Ulrich Kunzendorf; Stefan Krautwald

Cisplatin, a standard chemotherapeutic agent for many tumors, has an unfortunately common toxicity where almost a third of patients develop renal dysfunction after a single dose. Acute kidney injury caused by cisplatin depends on Fas-mediated apoptosis driven by Fas ligand (FasL) expressed on tubular epithelial and infiltrating immune cells. Since the role of FasL in T cells is known, we investigated whether its presence in primary kidney cells is needed for its toxic effect. We found that all cisplatin-treated wild-type (wt) mice died within 6 days; however, severe combined immunodeficiency (SCID)/beige mice (B-, T-, and natural killer-cell-deficient) displayed a significant survival benefit, with only 55% mortality while exhibiting significant renal failure. Treating SCID/beige mice with MFL3, a FasL-blocking monoclonal antibody, completely restored survival after an otherwise lethal cisplatin dose, suggesting another source of FasL besides immune cells. Freshly isolated primary tubule segments from wt mice were co-incubated with thick ascending limb (TAL) segments freshly isolated from mice expressing the green fluorescent protein (GFP) transgene (same genetic background) to determine whether FasL-mediated killing of tubular cells is an autocrine or paracrine mechanism. Cisplatin-stimulated primary segments induced apoptosis in the GFP-tagged TAL cells, an effect blocked by MFL3. Thus, our study shows that cisplatin-induced nephropathy is mediated through FasL, functionally expressed on tubular cells that are capable of inducing death of cells of adjacent tubules.

Collaboration


Dive into the Ulrich Kunzendorf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Linkermann

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Frieder Keller

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Walz

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge