Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Laufs is active.

Publication


Featured researches published by Ulrich Laufs.


Circulation | 1998

Upregulation of Endothelial Nitric Oxide Synthase by HMG CoA Reductase Inhibitors

Ulrich Laufs; Vito La Fata; Jorge Plutzky; James K. Liao

BACKGROUND Oxidized low-density lipoprotein (ox-LDL) causes endothelial dysfunction in part by decreasing the availability of endothelial nitric oxide (NO). Although HMG CoA reductase inhibitors restore endothelial function by reducing serum cholesterol levels, it is not known whether they can also directly upregulate endothelial NO synthase (ecNOS) activity. METHODS AND RESULTS Human saphenous vein endothelial cells were treated with ox-LDL (50 microg/mL thiobarbituric acid reactive substances 12 to 16 nmol/mg) in the presence of HMG CoA reductase inhibitors simvastatin and lovastatin. In a time-dependent manner, ox-LDL decreased ecNOS mRNA and protein levels (91+/-4% and 67+/-8% reduction after 72 hours, respectively). Both simvastatin (1 micromol/L) and lovastatin (10 micromol/L) upregulated ecNOS expression by 3.8-fold and 3.6-fold, respectively, and completely prevented its downregulation by ox-LDL. These effects of simvastatin on ecNOS expression correlated with changes in ecNOS activity. Although L-mevalonate alone did not affect ecNOS expression, cotreatment with L-mevalonate completely reversed ecNOS upregulation by simvastatin. Actinomycin D studies revealed that simvastatin stabilized ecNOS mRNA (tau1/2, 43 versus 35 hours). Nuclear run-on assays and transient transfection studies with a -1.6 kb ecNOS promoter construct showed that simvastatin did not affect ecNOS gene transcription. CONCLUSIONS Inhibition of endothelial HMG CoA reductase upregulates ecNOS expression predominantly by posttranscriptional mechanisms. These findings suggest that HMG CoA reductase inhibitors may have beneficial effects in atherosclerosis beyond that attributed to the lowering of serum cholesterol by increasing ecNOS activity.


Journal of Biological Chemistry | 1998

Post-transcriptional Regulation of Endothelial Nitric Oxide Synthase mRNA Stability by Rho GTPase

Ulrich Laufs; James K. Liao

The mechanism by which 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors increase endothelial nitric oxide synthase (eNOS) expression is unknown. To determine whether changes in isoprenoid synthesis affects eNOS expression, human endothelial cells were treated with the HMG-CoA reductase inhibitor, mevastatin (1–10 μm), in the presence ofl-mevalonate (200 μm), geranylgeranylpyrophosphate (GGPP, 1–10 μm), farnesylpyrophosphate (FPP, 5–10 μm), or low density lipoprotein (LDL, 1 mg/ml). Mevastatin increased eNOS mRNA and protein levels by 305 ± 15% and 180 ± 11%, respectively. Co-treatment with l-mevalonate or GGPP, but not FPP or LDL, reversed mevastatin’s effects. Because Rho GTPases undergo geranylgeranyl modification, we investigated whether Rho regulates eNOS expression. Immunoblot analyses and [35S]GTPγS-binding assays revealed that mevastatin inhibited Rho membrane translocation and GTP binding activity by 60 ± 5% and 78 ± 6%, both of which were reversed by co-treatment with GGPP but not FPP. Furthermore, inhibition of Rho by Clostridium botulinum C3 transferase (50 μg/ml) or by overexpression of a dominant-negative N19RhoA mutant increased eNOS expression. In contrast, activation of Rho byEscherichia coli cytotoxic necrotizing factor-1 (200 ng/ml) decreased eNOS expression. These findings indicate that Rho negatively regulates eNOS expression and that HMG-CoA reductase inhibitors up-regulate eNOS expression by blocking Rho geranylgeranylation, which is necessary for its membrane-associated activity.


Circulation | 2004

Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis.

Ulrich Laufs; Nikos Werner; Andreas Link; Matthias Endres; Sven Wassmann; Kristina Jürgens; Eckart Miche; Michael Böhm; Georg Nickenig

Background—The molecular mechanisms by which physical training improves peripheral and coronary artery disease are poorly understood. Bone marrow–derived endothelial progenitor cells (EPCs) are thought to exert beneficial effects on atherosclerosis, angiogenesis, and vascular repair. Methods and Results—To study the effect of physical activity on the bone marrow, EPCs were quantified by fluorescence-activated cell sorter analysis in mice randomized to running wheels (5.1±0.8 km/d, n=12 to 16 per group) or no running wheel. Numbers of EPCs circulating in the peripheral blood of trained mice were enhanced to 267±19%, 289±22%, and 280±25% of control levels after 7, 14, and 28 days, respectively, accompanied by a similar increase of EPCs in the bone marrow and EPCs expanded from spleen-derived mononuclear cells. eNOS−/− mice and wild-type mice treated with NG-nitro-l-arginine methyl ester showed lower EPC numbers at baseline and a significantly attenuated increase of EPC in response to physical activity. Exercise NO dependently increased serum levels of vascular endothelial growth factor and reduced the rate of apoptosis in spleen-derived EPCs. Running inhibited neointima formation after carotid artery injury by 22±2%. Neoangiogenesis, as assessed in a subcutaneous disc model, was increased by 41±16% compared with controls. In patients with stable coronary artery disease (n=19), moderate exercise training for 28 days led to a significant increase in circulating EPCs and reduced EPC apoptosis. Conclusions—Physical activity increases the production and circulating numbers of EPCs via a partially NO-dependent, antiapoptotic effect that could potentially underlie exercise-related beneficial effects on cardiovascular diseases.


Circulation Research | 2003

Intravenous Transfusion of Endothelial Progenitor Cells Reduces Neointima Formation After Vascular Injury

Nikos Werner; Stefan Junk; Ulrich Laufs; Andreas Link; Katrin Walenta; Michael Böhm; Georg Nickenig

&NA; —Endothelial cell damage is one important pathophysiological step of atherosclerosis and restenosis after angioplasty. Accelerated reendothelialization impairs neointima formation. We evaluated the role of intravenously transfused endothelial progenitor cells (EPCs) on reendothelialization and neointima formation in a mouse model of arterial injury. Spleen‐derived mouse mononuclear cells (MNCs) were cultured in endothelial basal medium. A total of 91.8±3.2% of adherent cells showed uptake of acetylated low‐density lipoprotein (Dil‐Ac‐LDL) and lectin binding after 4 days. Immunostaining and long‐term cultures confirmed the endothelial progenitor phenotype. To determine the effect of stem cell transfusion on reendothelialization, mice received either fluorescent‐labeled spleen‐derived MNCs or in vitro differentiated EPCs intravenously after endothelial injury of the carotid artery. Transfused cells were strictly restricted to the injury site, and lectin binding confirmed the endothelial phenotype. Homing of transfused cells to the site of injury was only detectable in splenectomized mice. Cell transfusion caused enhanced reendothelialization associated with a reduction of neointima formation. Systemically applied spleen‐derived MNCs and EPCs home to the site of vascular injury, resulting in an enhanced reendothelialization associated with decreased neointima formation. These results allow novel insights in stem cell biology and provide additional information for the treatment of vascular dysfunction and prevention of restenosis after angioplasty. The full text of this article is available online at http://www.circresaha.org. (Circ Res. 2003;93:e17‐e24.)


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

Bone Marrow–Derived Progenitor Cells Modulate Vascular Reendothelialization and Neointimal Formation: Effect of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibition

Nikos Werner; Josef Priller; Ulrich Laufs; Matthias Endres; Michael Böhm; Ulrich Dirnagl; Georg Nickenig

Objective—Atherosclerosis and restenosis after vascular injury are both characterized by endothelial dysfunction, apoptosis, inappropriate endothelialization, and neointimal formation. Bone marrow–derived endothelial progenitor cells have been implicated in neovascularization, resulting in adult blood vessel formation. Despite the anticipated stem cell plasticity, the role of bone marrow–derived endothelial progenitor cells has not been clarified in vascular lesion development. Methods and Results—We investigated vascular lesion formation in mice after transplantation of bone marrow transfected by means of retrovirus with enhanced green fluorescent protein. Carotid artery injury was induced, resulting in neointimal formation. Fluorescence microscopy and immunohistological analysis revealed that bone marrow–derived progenitor cells are involved in reendothelialization of the vascular lesions. Treatment with rosuvastatin (20 mg/kg body wt per day), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, enhanced the circulating pool of endothelial progenitor cells, propagated the advent of bone marrow–derived endothelial cells in the injured vessel wall, and, thereby, accelerated reendothelialization and significantly decreased neointimal formation. Conclusions—Vascular lesion development initiated by endothelial cell damage is moderated by bone marrow–derived progenitor cells. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibition promotes bone marrow–dependent reendothelialization and diminishes vascular lesion development. These findings may help to establish novel pathophysiological concepts and therapeutic strategies in the treatment of various cardiovascular diseases.


Hypertension | 2001

HMG-CoA Reductase Inhibitors Improve Endothelial Dysfunction in Normocholesterolemic Hypertension via Reduced Production of Reactive Oxygen Species

Sven Wassmann; Ulrich Laufs; Anselm T. Bäumer; Kirsten Müller; Katja Ahlbory; Wolfgang Linz; Gabi Itter; Renate Rösen; Michael Böhm; Georg Nickenig

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) significantly reduce cardiovascular mortality associated with hypercholesterolemia. There is evidence that statins exert beneficial effects in part through direct effects on vascular cells independent of lowering plasma cholesterol. We characterized the effect of a 30-day treatment with atorvastatin in normocholesterolemic, spontaneously hypertensive rats (SHR). Systolic blood pressure was significantly decreased in atorvastatin-treated rats (184±5 versus 204±6 mm Hg for control). Statin therapy improved endothelial dysfunction, as assessed by carbachol-induced vasorelaxation in aortic segments, and profoundly reduced angiotensin II-induced vasoconstriction. Angiotensin type 1 (AT1) receptor, endothelial cell NO synthase (ecNOS), and p22phox mRNA expression were determined with quantitative reverse transcription-polymerase chain reaction. Atorvastatin treatment downregulated aortic AT1 receptor mRNA expression to 44±12% of control and reduced mRNA expression of the essential NAD(P)H oxidase subunit p22phox to 63±7% of control. Aortic AT1 receptor protein expression was consistently decreased. Vascular production of reactive oxygen species was reduced to 62±12% of control in statin-treated SHR, as measured with lucigenin chemiluminescence assays. Accordingly, treatment of SHR with the AT1 receptor antagonist fonsartan improved endothelial dysfunction and reduced vascular free-radical release. Moreover, atorvastatin caused an upregulation of ecNOS mRNA expression (138±7% of control) and an enhanced ecNOS activity in the vessel wall (209±46% of control). Treatment of SHR with atorvastatin causes a significant reduction of systolic blood pressure and a profound improvement of endothelial dysfunction mediated by a reduction of free radical release in the vasculature. The underlying mechanism could in part be based on the statin-induced downregulation of AT1 receptor expression and decreased expression of the NAD(P)H oxidase subunit p22phox, because AT1 receptor activation plays a pivotal role for the induction of this redox system in the vessel wall.


European Heart Journal | 2015

Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management

Erik S. G. Stroes; Paul D. Thompson; Alberto Corsini; Georgirene D. Vladutiu; Frederick J. Raal; Kausik K. Ray; Michael Roden; Evan A. Stein; Lale Tokgozoglu; Børge G. Nordestgaard; Eric Bruckert; Guy De Backer; Ronald M. Krauss; Ulrich Laufs; Raul D. Santos; Robert A. Hegele; G. Kees Hovingh; Lawrence A. Leiter; François Mach; Winfried März; Connie B. Newman; Olov Wiklund; Terry A. Jacobson; Alberico L. Catapano; M. John Chapman; Henry N. Ginsberg

Statin-associated muscle symptoms (SAMS) are one of the principal reasons for statin non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. This European Atherosclerosis Society (EAS) Consensus Panel overviews current understanding of the pathophysiology of statin-associated myopathy, and provides guidance for diagnosis and management of SAMS. Statin-associated myopathy, with significant elevation of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000 to 1 per 10 000 people on standard statin doses. Statin-associated muscle symptoms cover a broader range of clinical presentations, usually with normal or minimally elevated CK levels, with a prevalence of 7–29% in registries and observational studies. Preclinical studies show that statins decrease mitochondrial function, attenuate energy production, and alter muscle protein degradation, thereby providing a potential link between statins and muscle symptoms; controlled mechanistic and genetic studies in humans are necessary to further understanding. The Panel proposes to identify SAMS by symptoms typical of statin myalgia (i.e. muscle pain or aching) and their temporal association with discontinuation and response to repetitive statin re-challenge. In people with SAMS, the Panel recommends the use of a maximally tolerated statin dose combined with non-statin lipid-lowering therapies to attain recommended low-density lipoprotein cholesterol targets. The Panel recommends a structured work-up to identify individuals with clinically relevant SAMS generally to at least three different statins, so that they can be offered therapeutic regimens to satisfactorily address their cardiovascular risk. Further research into the underlying pathophysiological mechanisms may offer future therapeutic potential.


Journal of Biological Chemistry | 1999

3-Hydroxy-3-methylglutaryl-CoA Reductase Inhibitors Attenuate Vascular Smooth Muscle Proliferation by Preventing Rho GTPase-induced Down-regulation of p27 Kip1

Ulrich Laufs; Diego E. Marra; Koichi Node; James K. Liao

The mechanism by which platelet-derived growth factor (PDGF) regulates vascular smooth muscle cell (SMC) DNA synthesis is unknown, but may involve isoprenoid intermediates of the cholesterol biosynthetic pathway. Inhibition of isoprenoid synthesis with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, simvastatin (Sim, 1–10 μm), inhibited PDGF-induced SMC DNA synthesis by >95%, retinoblastoma gene product hyperphosphorylation by 90%, and cyclin-dependent kinases (cdk)-2, -4, and -6 activity by 80 ± 5, 50 ± 3, and 48 ± 3%, respectively. This correlated with a 20-fold increase in p27 Kip1 without changes in p16, p21 Waf1 , or p53 levels compared with PDGF alone. Since Ras and Rho require isoprenoid modification for membrane localization and are implicated in cell cycle regulation, we investigated the effects of Sim on Ras and Rho. Up-regulation of p27 Kip1 and inhibition of Rho but not Ras membrane translocation by Sim were reversed by geranylgeranylpyrophosphate, but not farnesylpyrophosphate. Indeed, inhibition of Rho by Clostridium botulinum C3 transferase or overexpression of dominant-negative N19RhoA mutant increased p27 Kip1 and inhibited retinoblastoma hyperphosphorylation. In contrast, activation of Rho byEscherichia coli cytotoxic necrotizing factor-1 decreased p27 Kip1 and increased SMC DNA synthesis. These findings indicate that the down-regulation of p27 Kip1 by Rho GTPase mediates PDGF-induced SMC DNA synthesis and suggest a novel direct effect of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors on the vascular wall.


Circulation | 2003

Oxygen Free Radical Release in Human Failing Myocardium Is Associated With Increased Activity of Rac1-GTPase and Represents a Target for Statin Treatment

Christoph Maack; Tanja Kartes; Heiko Kilter; Hans-Joachim Schäfers; Georg Nickenig; Michael Böhm; Ulrich Laufs

Background—Reactive oxygen species (ROS) contribute to the development of heart failure. A potential source of myocardial ROS is the NADPH oxidase, which is regulated by the small GTP-binding protein rac1. Isoprenylation of rac1 can be inhibited by statin therapy. Thus, we examined ROS and rac1 in human failing myocardium and tested their regulation by statins in vivo. Methods and Results—In human left ventricular myocardium from patients with ischemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM), NADPH oxidase activity was increased 1.5-fold compared with nonfailing controls (P <0.05, n=8). In failing myocardium, increased oxidative stress determined by measurements of lipid peroxidation and aconitase activity was associated with increased translocation of rac1 from the cytosol to the membrane. Pull-down assays revealed a 3-fold increase of rac1-GTPase activity in ICM and DCM. In parallel, membrane expression of the NADPH oxidase subunit p47phox, but not p67phox, was upregulated in failing compared with nonfailing myocardium. In right atrial myocardium from patients undergoing cardiac surgery who were prospectively treated with atorvastatin or pravastatin (40 mg/d, 4 weeks), rac1-GTPase activity was decreased to 67.9±12% and 65.6±13.8% compared with patients without statin (P <0.05, n=8). Both atorvastatin and pravastatin significantly reduced angiotensin II–stimulated but not basal NADPH oxidase activity. Conclusions—Failing myocardium of patients with DCM and ICM is characterized by upregulation of NADPH oxidase–mediated ROS release associated with increased rac1 activity. Oral statin treatment inhibits myocardial rac1-GTPase activity. These data suggest that extrahepatic effects of statins can be observed in humans and may be beneficial for patients with chronic heart failure.


Journal of Biological Chemistry | 1997

INHIBITION OF 3-HYDROXY-3-METHYLGLUTARYL (HMG)-COA REDUCTASE BLOCKS HYPOXIA-MEDIATED DOWN-REGULATION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE

Ulrich Laufs; Vito La Fata; James K. Liao

Hypoxia induces vasoconstriction, in part, by down-regulating endothelial cell nitric oxide synthase (ecNOS) expression. Previous studies indicate that 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA) reductase inhibitors improve endothelium-dependent relaxation by increasing ecNOS activity. To determine whether HMG CoA reductase inhibitors can prevent hypoxia-mediated down-regulation of ecNOS function and expression, human endothelial cells were exposed to hypoxia (3% O2) in the presence of HMG CoA reductase inhibitors simvastatin and lovastatin for various durations (0–48 h). Hypoxia decreased ecNOS protein and mRNA levels in a time-dependent manner, resulting in a 4- and 9-fold reduction after 48 h, respectively. In a concentration-dependent manner, simvastatin, and to a lesser extent, lovastatin, prevented the down-regulation of ecNOS expression by hypoxia. Simvastatin-induced changes in ecNOS expression correlated with changes in endothelial NO production and were reversed by treatment with l-mevalonate. Actinomycin D studies revealed that under hypoxic conditions, simvastatin increased ecNOS mRNA half-life from 13 to 38 h. Nuclear run-on studies showed that simvastatin had no effect on repression of ecNOS gene transcription by hypoxia. These results indicate that HMG CoA reductase inhibitors regulate ecNOS function and expression through changes in ecNOS mRNA stability and suggest that treatment with HMG CoA reductase inhibitors may have beneficial effects in patients with hypoxia-mediated pulmonary hypertension.

Collaboration


Dive into the Ulrich Laufs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winfried März

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Georg Nickenig

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge