Ulrich Omasits
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrich Omasits.
Bioinformatics | 2014
Ulrich Omasits; Christian H. Ahrens; Sebastian C. Müller; Bernd Wollscheid
SUMMARY The ability to integrate and visualize experimental proteomic evidence in the context of rich protein feature annotations represents an unmet need of the proteomics community. Here we present Protter, a web-based tool that supports interactive protein data analysis and hypothesis generation by visualizing both annotated sequence features and experimental proteomic data in the context of protein topology. Protter supports numerous proteomic file formats and automatically integrates a variety of reference protein annotation sources, which can be readily extended via modular plug-ins. A built-in export function produces publication-quality customized protein illustrations, also for large datasets. Visualizations of surfaceome datasets show the specific utility of Protter for the integrated visual analysis of membrane proteins and peptide selection for targeted proteomics. AVAILABILITY AND IMPLEMENTATION The Protter web application is available at http://wlab.ethz.ch/protter. Source code and installation instructions are available at http://ulo.github.io/Protter/. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Nature Communications | 2016
Lynne Turnbull; Masanori Toyofuku; Amelia L. Hynen; Masaharu Kurosawa; Gabriella Pessi; Nicola K. Petty; Sarah R. Osvath; Gerardo Cárcamo-Oyarce; Erin S. Gloag; Raz Shimoni; Ulrich Omasits; Satoshi Ito; Xinhui Yap; Leigh G. Monahan; Rosalia Cavaliere; Christian H. Ahrens; Ian G. Charles; Nobuhiko Nomura; Leo Eberl; Cynthia B. Whitchurch
Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.
PLOS ONE | 2015
Damaris Bausch-Fluck; Andreas Hofmann; Thomas Bock; Andreas Frei; Ferdinando Cerciello; Andrea Jacobs; Hansjoerg Moest; Ulrich Omasits; Rebekah L. Gundry; Charles Yoon; Ralph Schiess; Alexander Schmidt; Paulina Mirkowska; Anetta Härtlová; Jennifer E. Van Eyk; Jean Pierre Bourquin; Ruedi Aebersold; Kenneth R. Boheler; Peter W. Zandstra; Bernd Wollscheid
Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.
Genome Research | 2013
Ulrich Omasits; Maxime Quebatte; Daniel J. Stekhoven; Claudia Fortes; Bernd Roschitzki; Mark D. Robinson; Christoph Dehio; Christian H. Ahrens
Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ∼90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.
PLOS ONE | 2012
Nadine Schmid; Gabriella Pessi; Yinyue Deng; Claudio Aguilar; Aurélien Carlier; Alexander Grunau; Ulrich Omasits; Lian-Hui Zhang; Christian H. Ahrens; Leo Eberl
Quorum sensing in Burkholderia cenocepacia H111 involves two signalling systems that depend on different signal molecules, namely N-acyl homoserine lactones (AHLs) and the diffusible signal factor cis-2-dodecenoic acid (BDSF). Previous studies have shown that AHLs and BDSF control similar phenotypic traits, including biofilm formation, proteolytic activity and pathogenicity. In this study we mapped the BDSF stimulon by RNA-Seq and shotgun proteomics analysis. We demonstrate that a set of the identified BDSF-regulated genes or proteins are also controlled by AHLs, suggesting that the two regulons partially overlap. The detailed analysis of two mutually regulated operons, one encoding three lectins and the other one encoding the large surface protein BapA and its type I secretion machinery, revealed that both AHLs and BDSF are required for full expression, suggesting that the two signalling systems operate in parallel. In accordance with this, we show that both AHLs and BDSF are required for biofilm formation and protease production.
Molecular Simulation | 2008
Ulrich Omasits; Bernhard Knapp; Martin Neumann; Othmar Steinhauser; Hannes Stockinger; Rene Kobler; Wolfgang Schreiner
Molecular dynamics (MD) studies of human major histocompatibility complex (MHC) HLAB*2705 complexing two different peptides were performed. During simulation one peptide partially detached from the MHC while the other peptide switched back and forth between several different configurations. These different configurations relate to conformational substates and can be assigned to different levels of chemical activity or even the molecular mechanisms of immunological signalling. To ensure reliable immunological conclusions from MD simulations we prepare the methodological tools by carefully evaluating initial conditions, system simplification, solvation shell thickness, water model/force field combination and simulation length. We also derive a guideline for appropriate model selection. This kind of quality assessment is seen a mandatory prerequisite for coming studies linking peptide-loaded MHC dynamics to T-cell activation.
Molecular Immunology | 2009
Bernhard Knapp; Ulrich Omasits; Barbara Bohle; Bernard Maillere; Christof Ebner; Wolfgang Schreiner; Beatrice Jahn-Schmid
CD4+ T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules on the surface of antigen presenting cells by their T cell receptor (TCR). Using a well-characterized allergen-specific model we studied peptide/MHC (pMHC) interactions by combining computational methods with experimental analyses. A 12-mer and an 18-mer peptide, both containing the human leukocyte antigen (HLA)-DR1-restricted, immunodominant T cell epitope of Art v 1, the major mugwort pollen allergen, were compared. A Molecular Dynamics simulation for a real time of 20 ns using GROMACS was performed. To this aim, the peptides were modelled into the binding groove of HLA-DRB1*0101 using different amino acid substitution tools. Binding of synthetic peptides to purified HLA-DRB1*0101 molecules was analysed in competition assays. The potency of the peptides to activate Art v 1-specific T cells was assessed using oligo- and monoclonal Art v 1-specific T cell cultures expanded from mugwort allergic individuals. All approaches revealed that the 18-mer peptide possessed higher HLA DR affinity as compared to the 12-mer. Computer modelling indicated that a loop-like structure within the additional N-terminal peptide flanking region of the 18-mer contributed to the pMHC interaction. Our approach, to combine computational methods validated by experimental results, demonstrates that Molecular Dynamics simulation may be a useful tool for the prediction of pMHC interactions in the future with possible applications in T cell-based immunotherapy e.g. in Type I allergy.
Journal of Computer-aided Molecular Design | 2009
Bernhard Knapp; Ulrich Omasits; Sophie Frantal; Wolfgang Schreiner
T-cells recognize antigens via their T-cell receptors. The major histocompatibility complex (MHC) binds antigens in a specific way, transports them to the surface and presents the peptides to the TCR. Many in silico approaches have been developed to predict the binding characteristics of potential T-cell epitopes (peptides), with most of them being based solely on the amino acid sequence. We present a structural approach which provides insights into the spatial binding geometry. We combine different tools for side chain substitution (threading), energy minimization, as well as scoring methods for protein/peptide interfaces. The focus of this study is on high data throughput in combination with accurate results. These methods are not meant to predict the accurate binding free energy but to give a certain direction for the classification of peptides into peptides that are potential binders and peptides that definitely do not bind to a given MHC structure. In total we performed approximately 83,000 binding affinity prediction runs to evaluate interactions between peptides and MHCs, using different combinations of tools. Depending on the tools used, the prediction quality ranged from almost random to around 75% of accuracy for correctly predicting a peptide to be either a binder or a non-binder. The prediction quality strongly depends on all three evaluation steps, namely, the threading of the peptide, energy minimization and scoring.
PLOS ONE | 2013
Gabriella Pessi; Rubina Braunwalder; Alexander Grunau; Ulrich Omasits; Christian H. Ahrens; Leo Eberl
B. cenocepacia is an opportunistic human pathogen that is particularly problematic for patients suffering from cystic fibrosis (CF). In the CF lung bacteria grow to high densities within the viscous mucus that is limited in oxygen. Pseudomonas aeruginosa, the dominant pathogen in CF patients, is known to grow and survive under oxygen-limited to anaerobic conditions by using micro-oxic respiration, denitrification and fermentative pathways. In contrast, inspection of the genome sequences of available B. cenocepacia strains suggested that B. cenocepacia is an obligate aerobic and non-fermenting bacterium. In accordance with the bioinformatics analysis we observed that B. cenocepacia H111 is able to grow with as little as 0.1% O2 but not under strictly anoxic conditions. Phenotypic analyses revealed that H111 produced larger amounts of biofilm, pellicle and proteases under micro-oxic conditions (0.5%–5% O2, i.e. conditions that mimic those encountered in CF lung infection), and was more resistant to several antibiotics. RNA-Seq and shotgun proteomics analyses of cultures of B. cenocepacia H111 grown under micro-oxic and aerobic conditions showed up-regulation of genes involved in the synthesis of the exopolysaccharide (EPS) cepacian as well as several proteases, two isocitrate lyases and other genes potentially important for life in micro-oxia. Data deposition: RNA-Seq raw data files are accessible through the GEO Series accession number GSE48585. MS data have been deposited in the ProteomeXchange database (PXD000270).
Journal of Biological Chemistry | 2016
Matthias Urfer; Jasmina Bogdanovic; Fabio Lo Monte; Kerstin Moehle; Katja Zerbe; Ulrich Omasits; Christian H. Ahrens; Gabriella Pessi; Leo Eberl; John A. Robinson
Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.