Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Pöschl is active.

Publication


Featured researches published by Ulrich Pöschl.


Nature | 2010

An amorphous solid state of biogenic secondary organic aerosol particles

Annele Virtanen; Jorma Joutsensaari; Thomas Koop; Jonna Kannosto; Pasi Yli-Pirilä; Jani Leskinen; J. M. Mäkelä; Jarmo K. Holopainen; Ulrich Pöschl; Markku Kulmala; Douglas R. Worsnop; Ari Laaksonen

Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth’s radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas–particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid—most probably glassy—state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles’ ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.


Tellus B | 2012

Primary biological aerosol particles in the atmosphere: a review

Viviane R. Després; J. Alex Huffman; Susannah M. Burrows; C. Hoose; A. S. Safatov; G. A. Buryak; Janine Fröhlich-Nowoisky; Wolfgang Elbert; Meinrat O. Andreae; Ulrich Pöschl; Ruprecht Jaenicke

Abstract Atmospheric aerosol particles of biological origin are a very diverse group of biological materials and structures, including microorganisms, dispersal units, fragments and excretions of biological organisms. In recent years, the impact of biological aerosol particles on atmospheric processes has been studied with increasing intensity, and a wealth of new information and insights has been gained. This review outlines the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus. We give an overview of sampling methods and physical, chemical and biological techniques for PBAP analysis (cultivation, microscopy, DNA/RNA analysis, chemical tracers, optical and mass spectrometry, etc.). Moreover, we address and summarise the current understanding and open questions concerning the influence of PBAP on the atmosphere and climate, i.e. their optical properties and their ability to act as ice nuclei (IN) or cloud condensation nuclei (CCN). We suggest that the following research activities should be pursued in future studies of atmospheric biological aerosol particles: (1) develop efficient and reliable analytical techniques for the identification and quantification of PBAP; (2) apply advanced and standardised techniques to determine the abundance and diversity of PBAP and their seasonal variation at regional and global scales (atmospheric biogeography); (3) determine the emission rates, optical properties, IN and CCN activity of PBAP in field measurements and laboratory experiments; (4) use field and laboratory data to constrain numerical models of atmospheric transport, transformation and climate effects of PBAP.


Science | 2010

Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.

Ulrich Pöschl; Scot T. Martin; B. Sinha; Qi Chen; Sachin S. Gunthe; J. A. Huffman; S. Borrmann; Delphine K. Farmer; Rebecca M. Garland; Jose L. Jimenez; Stephanie King; Antonio O. Manzi; E. F. Mikhailov; Theotonio Pauliquevis; Markus D. Petters; Anthony J. Prenni; Pontus Roldin; D. Rose; Johannes Schneider; Hang Su; S. R. Zorn; Paulo Artaxo; Meinrat O. Andreae

Clean or Dirty Aerosols strongly affect atmospheric properties and processes—including visibility, cloud formation, and radiative behavior. Knowing their effects in both clean and polluted air is necessary in order to understand their influence (see the Perspective by Baltensperger). Clarke and Kapustin (p. 1488) examine vertical atmospheric profiles collected above the Pacific Ocean, where air quality is affected by the transport of polluted air from the west, and find significant regional enhancements in light scattering, aerosol mass, and aerosol number associated with combustion. Aerosol particle concentrations in this region can exceed values in clean, unperturbed regions by over an order of magnitude. Thus combustion affects hemispheric aerosol optical depth and the distribution of cloud condensation nuclei. Pöschl et al. (p. 1513) discuss the composition of aerosols above the Amazon Basin, in the pristine conditions of the rainy season. The aerosols in this region are derived mostly from gaseous biogenic precursors, plants, and microorganisms, and particle concentration is orders of magnitude lower than in polluted continental regions. The majority of cloud condensation nuclei in the Amazon during the wet season are derived from biogenic precursors. The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Gas uptake and chemical aging of semisolid organic aerosol particles.

Manabu Shiraiwa; Markus Ammann; Thomas Koop; Ulrich Pöschl

Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate.


Journal of Geophysical Research | 2009

Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China

A. Wiedensohler; Y. F. Cheng; A. Nowak; B. Wehner; Peggy Achtert; M. Berghof; W. Birmili; Z. J. Wu; Min Hu; Tong Zhu; N. Takegawa; Kazuyuki Kita; Y. Kondo; Shengrong Lou; Andreas Hofzumahaus; F. Holland; Andreas Wahner; Sachin S. Gunthe; D. Rose; Hang Su; Ulrich Pöschl

[1] This study was part of the international field measurement Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006). We investigated a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN). During the 1-month observation, particle nucleation followed by significant particle growth on a regional scale was observed frequently (~30%), and we chose 23 August 2006 as a representative case study. Secondary aerosol mass was produced continuously, with sulfate, ammonium, and organics as major components. The aerosol mass growth rate was on average 19 μg m -3 h -1 during the late hours of the day. This growth rate was observed several times during the 1-month intensive measurements. The nucleation mode grew very quickly into the size range of CCN, and the CCN size distribution was dominated by the growing nucleation mode (up to 80% of the total CCN number concentration) and not as usual by the accumulation mode. At water vapor supersaturations of 0.07-0.86%, the CCN number concentrations reached maximum values of 4000-19,000 cm -3 only 6-14 h after the nucleation event. During particle formation and growth, the effective hygroscopicity parameter κ increased from about 0.1-0.3 to 0.35-0.5 for particles with diameters of 40-90 nm, but it remained nearly constant at ~0.45 for particles with diameters of ~190 nm. This result is consistent with aerosol chemical composition data, showing a pronounced increase of sulfate.


Proceedings of the National Academy of Sciences of the United States of America | 2009

High diversity of fungi in air particulate matter

Janine Fröhlich-Nowoisky; Daniel A. Pickersgill; Viviane R. Després; Ulrich Pöschl

Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 μm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.


Science | 2011

Soil Nitrite as a Source of Atmospheric HONO and OH Radicals

Hang Su; Yafang Cheng; Robert Oswald; Thomas Behrendt; Ivonne Trebs; Franz X. Meixner; Meinrat O. Andreae; Peng Cheng; Yuanhang Zhang; Ulrich Pöschl

Biogenic nitrite in soils is an important source of atmospheric HONO and OH. Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes, the release of HONO from soil may also be important in natural environments, including forests and boreal regions.


Reviews of Geophysics | 2010

Sources and properties of Amazonian aerosol particles

Scot T. Martin; Meinrat O. Andreae; Paulo Artaxo; Darrel Baumgardner; Qi Chen; Allen H. Goldstein; Alex Guenther; Colette L. Heald; Olga L. Mayol-Bracero; Peter H. McMurry; Theotonio Pauliquevis; Ulrich Pöschl; Kimberly A. Prather; G. C. Roberts; Scott R. Saleska; M. A. F. Silva Dias; D. V. Spracklen; Erik Swietlicki; Ivonne Trebs

This review provides a comprehensive account of what is known presently about Amazonian aerosol particles and concludes by formulating outlook and priorities for further research. The review is organized to follow the life cycle of Amazonian aerosol particles. It begins with a discussion of the primary and secondary sources relevant to the Amazonian particle burden, followed by a presentation of the particle properties that characterize the mixed populations present over the Amazon Basin at different times and places. These properties include number and mass concentrations and distributions, chemical composition, hygroscopicity, and cloud nucleation ability. The review presents Amazonian aerosol particles in the context of natural compared to anthropogenic sources as well as variability with season and meteorology. This review is intended to facilitate an understanding of the current state of knowledge on Amazonian aerosol particles specifically and tropical continental aerosol particles in general and thereby to enhance future research in this area. Copyright


Science Advances | 2016

Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China.

Yafang Cheng; Guangjie Zheng; Chao Wei; Qing Mu; Bo Zheng; Zhibin Wang; Meng Gao; Qiang Zhang; Kebin He; Gregory R. Carmichael; Ulrich Pöschl; Hang Su

Multiphase chemistry of NO2 and alkaline matter in aerosol water explains rapid sulfate formation and severe haze in China. Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m−3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution.


Journal of Atmospheric Chemistry | 2000

Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modelling

Ulrich Pöschl; R. von Kuhlmann; N. Poisson; Paul J. Crutzen

A new condensed isoprene oxidation mechanism forglobal atmospheric modeling (MIM) was derived from ahighly detailed master chemical mechanism (MCM). In abox model intercomparison covering a wide range ofboundary layer conditions the MIM was compared withthe MCM and with five other condensed mechanisms, someof which have already been used in global modelingstudies of nonmethane hydrocarbon chemistry. Theresults of MCM and MIM were generally in goodagreement, but the other tested mechanisms exhibitedsubstantial differences relative to the MCM as well asrelative to each other. Different formation yields,reactivities and degradation pathways of organicnitrates formed in the course of isoprene oxidationwere identified as a major reason for the deviations.The relevance of the box model results for chemistrytransport models is discussed, and the need for avalidated reference mechanism and for an improvedrepresentation of isoprene chemistry in global modelsis pointed out.

Collaboration


Dive into the Ulrich Pöschl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo Artaxo

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge