Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Weber is active.

Publication


Featured researches published by Ulrich Weber.


Nature | 2010

Recent decline in the global land evapotranspiration trend due to limited moisture supply

Martin Jung; Markus Reichstein; Philippe Ciais; Sonia I. Seneviratne; Justin Sheffield; Michael L. Goulden; Gordon B. Bonan; Alessandro Cescatti; Jiquan Chen; Richard de Jeu; A. Johannes Dolman; Werner Eugster; Dieter Gerten; Damiano Gianelle; Nadine Gobron; Jens Heinke; John S. Kimball; Beverly E. Law; Leonardo Montagnani; Qiaozhen Mu; Brigitte Mueller; Keith W. Oleson; Dario Papale; Andrew D. Richardson; Olivier Roupsard; Steve Running; Enrico Tomelleri; Nicolas Viovy; Ulrich Weber; Christopher A. Williams

More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land—a key diagnostic criterion of the effects of climate change and variability—remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1u2009±u20091.0u2009millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.


Nature | 2014

Global covariation of carbon turnover times with climate in terrestrial ecosystems

Nuno Carvalhais; Matthias Forkel; Myroslava Khomik; Jessica Bellarby; Martin Jung; Mirco Migliavacca; Mingquan Mu; Sassan Saatchi; Maurizio Santoro; Martin Thurner; Ulrich Weber; Bernhard Ahrens; Christian Beer; Alessandro Cescatti; James T. Randerson; Markus Reichstein

The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is xa0years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255xa0years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001

Silicon drift detectors for high count rate X-ray spectroscopy at room temperature

P. Lechner; C. Fiorini; Robert Hartmann; J. Kemmer; Norbert Krause; P. Leutenegger; A. Longoni; Heike Soltau; D. Stötter; R. Stötter; L. Strüder; Ulrich Weber

Abstract Silicon Drift Detectors (SDDs) combine a large sensitive area with a small value of the output capacitance and are therefore well suited for high resolution, high count rate X-ray spectroscopy. The low leakage current level obtained by the elaborated processing technology makes it possible to operate them at room temperature or with moderate cooling. A brief description of the device principle is followed by the presentation of first results of a new production of large area SDDs with external electronics. Performance and applications of the already established SDDs with on-chip amplification are summarised. Various shapes of Multichannel Drift Detectors are introduced as well as their use in new experiments like X-ray holography and in new systems like an Anger camera for γ-ray imaging.


Physical Review Letters | 2005

Experimental Analysis of a Four-Qubit Photon Cluster State

Nikolai Kiesel; Christian Schmid; Ulrich Weber; Geza Toth; Otfried Gühne; Rupert Ursin; Harald Weinfurter

Linear-optics quantum logic operations enabled the observation of a four-photon cluster state. We prove genuine four-partite entanglement and study its persistency, demonstrating remarkable differences from the usual Greenberger-Horne-Zeilinger (GHZ) state. Efficient analysis tools are introduced in the experiment, which will be of great importance in further studies on multiparticle entangled states.


Nature | 2017

Compensatory water effects link yearly global land CO2 sink changes to temperature.

Martin Jung; Markus Reichstein; Christopher R. Schwalm; Chris Huntingford; Stephen Sitch; Anders Ahlström; Almut Arneth; Gustau Camps-Valls; Philippe Ciais; Pierre Friedlingstein; Fabian Gans; Kazuhito Ichii; Atul K. Jain; Etsushi Kato; Dario Papale; Ben Poulter; Botond Ráduly; Christian Rödenbeck; Gianluca Tramontana; Nicolas Viovy; Ying-Ping Wang; Ulrich Weber; Sönke Zaehle; Ning Zeng

Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.


Biogeosciences | 2013

Impact of human population density on fire frequency at the global scale

Wolfgang Knorr; Thomas Kaminski; Almut Arneth; Ulrich Weber

Human impact on wildfires, a major earth system component, remains poorly understood. While local studies have found more fires close to settlements and roads, assimilated charcoal records and analyses of regional fire patterns from remote-sensing observations point to a decline in fire frequency with increasing human population. Here, we present a global analysis using three multi-year satellite-based burned-area products combined with a parameter estimation and uncertainty analysis with a non-linear model. We show that at the global scale, the impact of increasing population density is mainly to reduce fire frequency. Only for areas with up to 0.1 people per km(2), we find that fire frequency increases by 10 to 20% relative to its value at no population. The results are robust against choice of burned-area data set, and indicate that at only very few places on earth, fire frequency is limited by human ignitions. Applying the results to historical population estimates results in a moderate but accelerating decline of global burned area by around 14% since 1800, with most of the decline since 1950. (Less)


Global Change Biology | 2015

Codominant water control on global interannual variability and trends in land surface phenology and greenness.

Matthias Forkel; Mirco Migliavacca; Kirsten Thonicke; Markus Reichstein; Sibyll Schaphoff; Ulrich Weber; Nuno Carvalhais

Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund-Potsdam-Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming-induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land-use and land-cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale.


Global Change Biology | 2015

Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation

Yongshuo H. Fu; Shilong Piao; Yann Vitasse; Hongfang Zhao; Hans J. De Boeck; Qiang Liu; Hui Yang; Ulrich Weber; Heikki Hänninen; Ivan A. Janssens

Recent studies have revealed large unexplained variation in heat requirement-based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species-specific heat requirement for leaf flushing of 13 temperate woody species using long-term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980-2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well-known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available. Further experimental research is thus needed to verify whether insolation and precipitation sums directly affect the heat requirement for leaf flushing.


Journal of Climate | 2014

Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land–Atmosphere CO2 Fluxes*

Christian Beer; Ulrich Weber; Enrico Tomelleri; Nuno Carvalhais; Miguel D. Mahecha; Markus Reichstein

AbstractTemporal variability of meteorological variables and extreme weather events is projected to increase in many regions of the world during the next century. Artificial experiments using process-oriented terrestrial ecosystem models make it possible to isolate effects of temporal variability from effects of gradual climate change on terrestrial ecosystem functions and the system state. Such factorial experiments require two long-term climate datasets: 1) a control dataset that represents observed and projected climate and 2) a dataset with the same long-term mean as the control dataset but with altered short-term variability. Using a bias correction method, various climate datasets spanning different periods are harmonized and then combined with the control dataset with consistent time series for Europe during 1901–2100. Then, parameters of a distribution transformation function are estimated for individual meteorological variables to derive the second climate dataset, which has similar long-term mea...


Astronomical Telescopes and Instrumentation | 2000

Multichannel silicon drift detectors for x-ray spectroscopy

Peter Lechner; Werner Buttler; C. Fiorini; Robert Hartmann; Josef Kemmer; Norbert Krause; P. Leutenegger; A. Longoni; Heike Soltau; Diana Stoetter; R. Stoetter; Lothar Strueder; Ulrich Weber

Silicon Drift Detectors (SDDs) with integrated readout transistor combine a large sensitive area with a small value of the output capacitance and are therefore well suited for high resolution, high count rate X-ray spectroscopy. The low leakage current level obtained by the elaborated process technology makes it possible to operate them at room temperature or with moderate cooling. The monolithic combination of a number of SDDs to a Multichannel Drift Detector solves the limitation in size of the single device and allows the realization of new physics experiments and systems. The description of the device principle is followed by the introduction of the Multichannel Drift Detector concept. Layout, performance, and examples of current and future applications are given.

Collaboration


Dive into the Ulrich Weber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge