Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrik Kræmer Sundekilde is active.

Publication


Featured researches published by Ulrik Kræmer Sundekilde.


Metabolites | 2013

NMR-Based Milk Metabolomics

Ulrik Kræmer Sundekilde; Lotte Bach Larsen; Hanne Christine Bertram

Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits.


Journal of Agricultural and Food Chemistry | 2011

Relationship between the metabolite profile and technological properties of bovine milk from two dairy breeds elucidated by NMR-based metabolomics.

Ulrik Kræmer Sundekilde; Pernille Dorthea Frederiksen; Morten Rahr Clausen; Lotte Bach Larsen; Hanne Christine Bertram

The aim of the present study was to investigate the relationship between the metabolite profile of milk and important technological properties by using nuclear magnetic resonance (NMR)-based metabolomics. The metabolomics approach was introduced for the metabolic profiling of a set of milk samples from two dairy breeds representing a wide span in coagulation properties. The milk metabolite profiles obtained by proton and carbon NMR spectroscopy could be correlated to breed and, more interestingly, also with the coagulation profile, as established by traditional methods by using principal component analysis (PCA). The metabolites responsible for the separation into breed could mainly be ascribed to carnitine and lactose, whereas the metabolites varying in the samples with respect to coagulation properties included citrate, choline, carnitine, and lactose. The results found in the present study demonstrated a promising potential of NMR-based metabolomics for a rapid analysis and classification of milk samples, both of which are useful for the dairy industry.


Journal of Dairy Science | 2013

Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk

Ulrik Kræmer Sundekilde; Nina Aagaard Poulsen; Lotte Bach Larsen; Hanne Christine Bertram

Somatic cell count (SCC) is associated with changes in milk composition, including changes in proteins, lipids, and milk metabolites. Somatic cell count is normally used as an indicator of mastitis infection. The compositional changes in protein and fat affect milk coagulation properties, and also the metabolite composition is thought to contribute to differential milk properties. Milk somatic cells comprise different cell types, which may contribute to differential milk metabolite fingerprints. In this study, milk from a relatively large number of individual cows, representing significant differences in SCC, were analyzed by nuclear magnetic resonance (NMR)-based metabonomics, and the milk metabolite profiles were analyzed for differences related to SCC. Global principal component analysis performed on 876 samples from 2 Danish dairy breeds and orthogonal projection of latent structures discriminant analysis performed on a smaller subset (n=70) representing high (SCC >7.2×10(5) cells/mL) and low (SCC <1.4×10(4) cells/mL) milk SCC identified latent variables, which could be attributed to milk with elevated SCC. In addition, partial least squares regression between the NMR milk metabolite profiles and SCC revealed a strong correlation. The orthogonal projection of latent structures discriminant analysis and partial least squares regressions pinpointed specific NMR spectral regions and thereby identification of milk metabolites that differed according to SCC. Relative quantification of the identified metabolites revealed that lactate, butyrate, isoleucine, acetate, and β-hydroxybutyrate were increased, whereas hippurate and fumarate were decreased in milk with high levels of somatic cells.


Journal of Agricultural and Food Chemistry | 2012

Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds

Ulrik Kræmer Sundekilde; Daniela Barile; Mickael Meyrand; Nina Aagaard Poulsen; Lotte Bach Larsen; Carlito B. Lebrilla; J. Bruce German; Hanne Christine Bertram

Free oligosaccharides are key components of human milk and play multiple roles in the health of the neonate, by stimulating growth of selected beneficial bacteria in the gut, participating in development of the brain, and exerting antipathogenic activity. However, the concentration of oligosaccharides is low in mature bovine milk, normally used for infant formula, compared with both human colostrum and mature human milk. Characterization of bovine milk oligosaccharides in different breeds is crucial for the identification of viable sources for oligosaccharide purification. An improved source of oligosaccharides can lead to infant formula with improved oligosaccharide functionality. In the present study we have analyzed milk oligosaccharides by high-performance liquid chromatography chip quadrupole time-of-flight mass spectrometry and performed a detailed data analysis using both univariate and multivariate methods. Both statistical tools revealed several differences in oligosaccharide profiles between milk samples from the two Danish breeds, Jersey and Holstein-Friesians. Jersey milk contained higher relative amounts of both sialylated and the more complex neutral fucosylated oligosaccharides, while the Holstein-Friesian milk had higher abundance of smaller and simpler neutral oligosaccharides. The statistical analyses revealed that Jersey milk contains levels of fucosylated oligosaccharides significantly higher than that of Holstein-Friesian milk. Jersey milk also possesses oligosaccharides with a higher degree of complexity and functional residues (fucose and sialic acid), suggesting it may therefore offer advantages in term of a wider array of bioactivities.


Journal of Agricultural and Food Chemistry | 2014

Lactose-Hydrolyzed Milk Is More Prone to Chemical Changes during Storage than Conventional Ultra-High-Temperature (UHT) Milk

Therese Jansson; Morten Rahr Clausen; Ulrik Kræmer Sundekilde; Nina Eggers; Steffen Nyegaard; Lotte Bach Larsen; Colin A. Ray; Anja Sundgren; Henrik J. Andersen; Hanne Christine Bertram

The enzymatic hydrolysis of lactose to glucose and galactose gives rise to reactions that change the chemistry and quality of ambient-stored lactose-hydrolyzed ultra-high-temperature (UHT) milk. The aim of the present study was to investigate and compare chemical changes in lactose-hydrolyzed and conventional UHT milk during a 9 month ambient storage period. Several complementary analyses of volatiles, free amino acids, acetate, furosine, and level of free amino terminals were concluded. The analyses revealed an increased level of free amino acids and an increased formation rate of specific compounds such as furosine and 2-methylbutanal in lactose-hydrolyzed UHT milk compared to conventional UHT milk during storage. These observations indicate more favorable conditions for Maillard and subsequent reactions in lactose-hydrolyzed milk compared to conventional UHT milk stored at ambient temperature. Furthermore, it is postulated that proteolytic activity from the lactase-enzyme preparation may be responsible for the observed higher levels of free amino acids in lactose-hydrolyzed UHT milk.


Journal of Dairy Science | 2013

Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk

A.J. Buitenhuis; Ulrik Kræmer Sundekilde; Nina Aagaard Poulsen; Hanne Christine Bertram; Lotte Bach Larsen; Peter Sørensen

Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. For this purpose, milk samples were collected in mid lactation from 371 Danish Holstein cows in first to third parity. A total of 31 metabolites were detected and identified in bovine milk by using (1)H nuclear magnetic resonance (NMR) spectroscopy. Cows were genotyped using a bovine high-density single nucleotide polymorphism (SNP) chip. Based on the SNP data, a genomic relationship matrix was calculated and used as a random factor in a model together with 2 fixed factors (herd and lactation stage) to estimate the heritability and breeding value for individual metabolites in the milk. Heritability was in the range of 0 for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25; and glycerophosphocholine: BTA25]. These results demonstrate that selection for metabolites in bovine milk may be possible.


Cell Death & Differentiation | 2012

Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation

Philip Hallenborg; Søren Feddersen; S Francoz; Incoronata Murano; Ulrik Kræmer Sundekilde; Rasmus Koefoed Petersen; Vyacheslav Akimov; M V Olson; G Lozano; Saverio Cinti; Bjørn Tore Gjertsen; Lise Madsen; J-C Marine; Blagoy Blagoev; Karsten Kristiansen

The role of the E3 ubiquitin ligase murine double minute 2 (Mdm2) in regulating the stability of the p53 tumor suppressor is well documented. By contrast, relatively little is known about p53-independent activities of Mdm2 and the role of Mdm2 in cellular differentiation. Here we report a novel role for Mdm2 in the initiation of adipocyte differentiation that is independent of its ability to regulate p53. We show that Mdm2 is required for cAMP-mediated induction of CCAAT/enhancer-binding protein δ (C/EBPδ) expression by facilitating recruitment of the cAMP regulatory element-binding protein (CREB) coactivator, CREB-regulated transcription coactivator (Crtc2)/TORC2, to the c/ebpδ promoter. Our findings reveal an unexpected role for Mdm2 in the regulation of CREB-dependent transactivation during the initiation of adipogenesis. As Mdm2 is able to promote adipogenesis in the myoblast cell line C2C12, it is conceivable that Mdm2 acts as a switch in cell fate determination.


Molecular Nutrition & Food Research | 2016

Lean‐seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study

Mette Schmedes; Eli Kristin Aadland; Ulrik Kræmer Sundekilde; Hélène Jacques; Charles Lavigne; Ingvild Eide Graff; Øyvin Eng; Asle Holthe; Gunnar Mellgren; Jette F. Young; Hanne Christine Bertram; Bjørn Liaset; Morten Rahr Clausen

SCOPE Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet-induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean-seafood or nonseafood diets. It is shown that lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. METHODS In a randomized controlled trial with crossover design, 20 healthy subjects consumed two balanced diets that varied in main protein sources for 4 weeks. Morning spot urine samples were collected before and after each intervention period. Untargeted metabolomics based on (1) H NMR spectroscopy and LC-MS analyses were applied to characterize the urinary metabolic response to the interventions. RESULTS The lean-seafood diet period reduced the urinary level of l-carnitine, 2,6-dimethylheptanoylcarnitine, and N-methyl-2-pyridone-5-carboxamide, relative to the nonseafood period. The dietary analysis revealed that the higher urinary level of trimethylamine-N-oxide after the lean-seafood diet period and guanidinoacetate and 3-methylhistidine after the nonseafood diet period was related to the endogenous content of these compounds in the diets. CONCLUSIONS Our data reveal that 4 weeks of lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects after the lean-seafood intake.


Journal of Agricultural and Food Chemistry | 2014

Chemical and proteolysis-derived changes during long-term storage of lactose-hydrolyzed ultrahigh-temperature (UHT) milk.

Therese Jansson; H.B. Jensen; Ulrik Kræmer Sundekilde; Morten Rahr Clausen; Nina Eggers; Lotte Bach Larsen; Colin A. Ray; Henrik J. Andersen; Hanne Christine Bertram

Proteolytic activity in milk may release bitter-tasting peptides and generate free amino terminals that react with carbohydrates, which initiate Maillard reaction. Ultrahigh temperature (UHT) heat treatment inactivates the majority of proteolytic enzymes in milk. In lactose-hydrolyzed milk a β-galactosidase preparation is applied to the milk after heat treatment, which has proteolytic side activities that may induce quality deterioration of long-term-stored milk. In the present study proteolysis, glycation, and volatile compound formation were investigated in conventional (100% lactose), filtered (60% lactose), and lactose-hydrolyzed (<1% lactose) UHT milk using reverse phase high-pressure liquid chromatography-mass spectrometry, proton nuclear magnetic resonance, and gas chromatography-mass spectrometry. Proteolysis was observed in all milk types. However, the degree of proteolysis was significantly higher in the lactose-hydrolyzed milk compared to the conventional and filtered milk. The proteins most prone to proteolysis were β-CN and αs1-CN, which were clearly hydrolyzed after approximately 90 days of storage in the lactose-hydrolyzed milk.


Nutrients | 2016

The Effect of Gestational and Lactational Age on the Human Milk Metabolome

Ulrik Kræmer Sundekilde; Eimear Downey; James A. O'Mahony; Carol Anne O'Shea; C. Anthony Ryan; Alan L. Kelly; Hanne Christine Bertram

Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by nuclear magnetic resonance (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5–7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery.

Collaboration


Dive into the Ulrik Kræmer Sundekilde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asle Holthe

Bergen University College

View shared research outputs
Researchain Logo
Decentralizing Knowledge