Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrika Islander is active.

Publication


Featured researches published by Ulrika Islander.


PLOS ONE | 2014

Probiotics protect mice from ovariectomy-induced cortical bone loss.

Claes Ohlsson; Cecilia Engdahl; Frida Fåk; Annica Andersson; Sara H. Windahl; Helen H. Farman; Sofia Movérare-Skrtic; Ulrika Islander; Klara Sjögren

The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ethanol prevents development of destructive arthritis

Ing-Marie Jonsson; Margareta Verdrengh; Mikael Brisslert; Sofia Lindblad; Maria Bokarewa; Ulrika Islander; Hans Carlsten; Claes Ohlsson; Kutty Selva Nandakumar; Rikard Holmdahl; Andrej Tarkowski

Environmental factors are thought to play a major role in the development of rheumatoid arthritis. Because the use of ethanol is widespread, we assessed the role of ethanol intake on the propensity to develop chronic arthritis. Collagen type II-immunized mice were given water or water containing 10% (vol/vol) ethanol or its metabolite acetaldehyde. Their development of arthritis was assessed, as well as the impact of ethanol on leukocyte migration and activation of intracellular transcription factors. Mice exposed daily to this dose of ethanol did not display any liver toxicity, and the development of erosive arthritis was almost totally abrogated. In contrast, the antibody-mediated effector phase of collagen-induced arthritis was not influenced by ethanol exposure. Also, the major ethanol metabolite, acetaldehyde, prevented the development of arthritis. This antiinflammatory and antidestructive property of ethanol was mediated by (i) down-regulation of leukocyte migration and (ii) up-regulation of testosterone secretion, with the latter leading to decreased NF-κB activation. We conclude that low but persistent ethanol consumption delays the onset and halts the progression of collagen-induced arthritis by interaction with innate immune responsiveness.


Arthritis & Rheumatism | 2011

Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis

Huamei Forsman; Ulrika Islander; Emil Andréasson; Annica Andersson; Karin Önnheim; Alexandra Karlström; Karin Sävman; Mattias Magnusson; Kelly L. Brown; Anna Karlsson

OBJECTIVE Galectin 3, an endogenous β-galactoside-binding lectin, plays an important role in the modulation of immune responses. The finding that galectin 3 is present in the inflamed synovium in patients with rheumatoid arthritis suggests that the protein is associated with the pathogenesis of this disease. We undertook this study to investigate the influence of galectin 3 deficiency in a murine model of arthritis. METHODS Wild-type (WT) and galectin 3-deficient (galectin 3(-/-) ) mice were subjected to antigen-induced arthritis (AIA) through immunization with methylated bovine serum albumin. The concentration of serum cytokines (interleukin-6 [IL-6] and tumor necrosis factor α [TNFα]) and antigen-specific antibodies was evaluated using a cytometric bead array platform and enzyme-linked immunosorbent assay (ELISA). Cellular IL-17 responses were examined by flow cytometry, ELISA, and enzyme-linked immunospot assay. RESULTS The joint inflammation and bone erosion of AIA were markedly suppressed in galectin 3(-/-) mice as compared with WT mice. The reduced arthritis in galectin 3(-/-) mice was accompanied by decreased levels of antigen-specific IgG and proinflammatory cytokines. The frequency of IL-17-producing cells in the spleen was reduced in galectin 3(-/-) mice as compared with WT mice. Exogenously added recombinant galectin 3 could partially restore the reduced arthritis and cytokines in galectin 3(-/-) mice. CONCLUSION Our findings show that galectin 3 plays a pathogenic role in the development and progression of AIA and that the disease severity is accompanied by alterations of antigen-specific IgG levels, systemic levels of TNFα and IL-6, and frequency of IL-17-producing T cells. To our knowledge, this is the first report of in vivo evidence that galectin 3 plays a crucial role in the development of arthritis.


Molecular and Cellular Endocrinology | 2011

Estrogens in rheumatoid arthritis; the immune system and bone

Ulrika Islander; Caroline Jochems; Marie K Lagerquist; Helena Forsblad-d'Elia; Hans Carlsten

Rheumatoid arthritis (RA) is an autoimmune disease that is more common in women than in men. The peak incidence in females coincides with menopause when the ovarian production of sex hormones drops markedly. RA is characterized by skeletal manifestations where production of pro-inflammatory mediators, connected to the inflammation in the joint, leads to bone loss. Animal studies have revealed distinct beneficial effects of estrogens on arthritis, and a positive effect of hormone replacement therapy has been reported in women with postmenopausal RA. This review will focus on the influence of female sex hormones in the pathogenesis and progression of RA.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Roles of transactivating functions 1 and 2 of estrogen receptor-α in bone

Anna E. Börjesson; Sara H. Windahl; Marie K Lagerquist; Cecilia Engdahl; Baruch Frenkel; Sofia Movérare-Skrtic; Klara Sjögren; Jenny M. Kindblom; Alexandra Stubelius; Ulrika Islander; Maria Cristina Antal; Andrée Krust; Pierre Chambon; Claes Ohlsson

The bone-sparing effect of estrogen is primarily mediated via estrogen receptor-α (ERα), which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand binding domain. To evaluate the role of ERα AF-1 and ERα AF-2 for the effects of estrogen in bone in vivo, we analyzed mouse models lacking the entire ERα protein (ERα−/−), ERα AF-1 (ERαAF-10), or ERα AF-2 (ERαAF-20). Estradiol (E2) treatment increased the amount of both trabecular and cortical bone in ovariectomized (OVX) WT mice. Neither the trabecular nor the cortical bone responded to E2 treatment in OVX ERα−/− or OVX ERαAF-20 mice. OVX ERαAF-10 mice displayed a normal E2 response in cortical bone but no E2 response in trabecular bone. Although E2 treatment increased the uterine and liver weights and reduced the thymus weight in OVX WT mice, no effect was seen on these parameters in OVX ERα−/− or OVX ERαAF-20 mice. The effect of E2 in OVX ERαAF-10 mice was tissue-dependent, with no or weak E2 response on thymus and uterine weights but a normal response on liver weight. In conclusion, ERα AF-2 is required for the estrogenic effects on all parameters evaluated, whereas the role of ERα AF-1 is tissue-specific, with a crucial role in trabecular bone and uterus but not cortical bone. Selective ER modulators stimulating ERα with minimal activation of ERα AF-1 could retain beneficial actions in cortical bone, constituting 80% of the skeleton, while minimizing effects on reproductive organs.


Arthritis Research & Therapy | 2005

Osteoporosis in experimental postmenopausal polyarthritis: the relative contributions of estrogen deficiency and inflammation

Caroline Jochems; Ulrika Islander; Malin C. Erlandsson; Margareta Verdrengh; Claes Ohlsson; Hans Carlsten

Generalized osteoporosis in postmenopausal rheumatoid arthritis (RA) is caused both by estrogen deficiency and by the inflammatory disease. The relative importance of each of these factors is unknown. The aim of this study was to establish a murine model of osteoporosis in postmenopausal RA, and to evaluate the relative importance and mechanisms of menopause and arthritis-related osteoporosis. To mimic postmenopausal RA, DBA/1 mice were ovariectomized, followed by the induction of type II collagen-induced arthritis. After the mice had been killed, paws were collected for histology, one femur for bone mineral density (BMD) and sera for analyses of markers of bone resorption (RatLaps; type I collagen cross-links, bone formation (osteocalcin) and cartilage destruction (cartilage oligomeric matrix protein), and for the evaluation of antigen-specific and innate immune responsiveness. Ovariectomized mice displayed more severe arthritis than sham-operated controls. At termination of the experiment, arthritic control mice and non-arthritic ovariectomized mice displayed trabecular bone losses of 26% and 22%, respectively. Ovariectomized mice with arthritis had as much as 58% decrease in trabecular BMD. Interestingly, cortical BMD was decreased by arthritis but was not affected by hormonal status. In addition, markers of bone resorption and cartilage destruction were increased in arthritic mice, whereas markers of bone formation were increased in ovariectomized mice. This study demonstrates that the loss of endogenous estrogen and inflammation contribute additively and equally to osteoporosis in experimental postmenopausal polyarthritis. Markers of bone remodeling and bone marrow lymphocyte phenotypes indicate different mechanisms for the development of osteoporosis caused by ovariectomy and arthritis in this model.


Infection and Immunity | 2010

Superantigenic Staphylococcus aureus Stimulates Production of Interleukin-17 from Memory but Not Naive T Cells

Ulrika Islander; Annica Andersson; Erika Lindberg; Ingegerd Adlerberth; Agnes E. Wold; Anna Rudin

ABSTRACT T-helper 17 (Th17) cells are characterized by their production of interleukin-17 (IL-17) and have a role in the protection against infections and in certain inflammatory diseases. Humans who lack Th17 cells are more susceptible to Staphylococcus aureus infections compared to individuals having Th17 cells. S. aureus is part of the commensal skin microflora and also colonize the infant gut. To investigate whether UV-killed S. aureus would be more capable of inducing IL-17 than other commensal bacteria, we stimulated mononuclear cells from adults, infants, and newborns with various gram-positive and gram-negative commensal bacteria. IL-17 was produced from adult memory Th17 cells after stimulation with superantigen-producing S. aureus but not nonsuperantigenic S. aureus or other common commensal gut bacteria. Cells from newborns were poor IL-17 producers after stimulation with S. aureus, whereas in some cases IL-17 was secreted from cells isolated from infants at the age of 4 and 18 months. These results suggest that superantigenic S. aureus are particularly efficient in stimulating IL-17 production and that the cytokine is produced from memory T cells.


Arthritis Research & Therapy | 2015

Estrogen regulates T helper 17 phenotype and localization in experimental autoimmune arthritis

Annica Andersson; Alexandra Stubelius; Merja Nurkkala Karlsson; Cecilia Engdahl; Malin C. Erlandsson; Louise Grahnemo; Marie K Lagerquist; Ulrika Islander

IntroductionThe incidence and progression of many autoimmune diseases are sex-biased, which might be explained by the immunomodulating properties of endocrine hormones. Treatment with estradiol potently inhibits experimental autoimmune arthritis. Interleukin-17-producing T helper cells (Th17) are key players in several autoimmune diseases, particularly in rheumatoid arthritis. The aim of this study was to investigate the effects of estrogen on Th17 cells in experimental arthritis.MethodsOvariectomized DBA/1 mice treated with 17β-estradiol (E2) or placebo were subjected to collagen-induced arthritis (CIA), and arthritis development was assessed. Th17 cells in joints and lymph nodes were studied by flow cytometry. Lymph node Th17 cells were also examined in ovariectomized estrogen receptor α–knockout mice (ERα−/−) and wild-type littermates, treated with E2 or placebo and subjected to antigen-induced arthritis.ResultsE2-treated mice with established CIA showed reduced severity of arthritis and fewer Th17 cells in joints compared with controls. Interestingly, E2-treated mice displayed increased Th17 cells in lymph nodes during the early phase of the disease, dependent on ERα. E2 increased the expression of C-C chemokine receptor 6 (CCR6) on lymph node Th17 cells as well as the expression of the corresponding C-C chemokine ligand 20 (CCL20) within lymph nodes.ConclusionsThis is the first study in which the effects of E2 on Th17 cells have been characterized in experimental autoimmune arthritis. We report that E2 treatment results in an increase of Th17 cells in lymph nodes during the early phase of arthritis development, but leads to a decrease of Th17 in joints during established arthritis. Our data suggest that this may be caused by interference with the CCR6-CCL20 pathway, which is important for Th17 cell migration. This study contributes to the understanding of the role of estrogen in the development of autoimmune arthritis and opens up new fields for research concerning the sex bias in autoimmune disease.


Journal of Bone and Mineral Research | 2013

The role of activation functions 1 and 2 of estrogen receptor‐α for the effects of estradiol and selective estrogen receptor modulators in male mice

Anna E. Börjesson; Helen H. Farman; Cecilia Engdahl; Antti Koskela; Klara Sjögren; Jenny M. Kindblom; Alexandra Stubelius; Ulrika Islander; Hans Carlsten; Maria Cristina Antal; Andrée Krust; Pierre Chambon; Juha Tuukkanen; Marie K Lagerquist; Sara H. Windahl; Claes Ohlsson

Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)‐α. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ERα had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ERα for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERαAF‐1 (ERαAF‐10), ERαAF‐2 (ERαAF‐20), or the total ERα (ERα−/−) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ERα−/− or ERαAF‐20 mirx ERαAF‐10 mice were tissue‐dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERαAF‐1 for the effects of SERMs, we treated orx WT and ERαAF‐10 mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERαAF‐10 mice. In conclusion, ERαAF‐2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERαAF‐1 is tissue‐specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERαAF‐1. Our findings might contribute to the development of bone‐specific SERMs in males.


Immunity, inflammation and disease | 2014

Effects of lasofoxifene and bazedoxifene on B cell development and function.

Angelina I. Bernardi; Annica Andersson; Louise Grahnemo; Merja Nurkkala-Karlsson; Claes Ohlsson; Hans Carlsten; Ulrika Islander

The third generation selective estrogen receptor modulators lasofoxifene (las) and bazedoxifene (bza) are indicated for treatment of postmenopausal osteoporosis. 17β‐Estradiol (E2) and the second generation SERM raloxifene (ral) have major effects on the immune system, particularly on B cells. Treatment with E2 or ral inhibits B lymphopoiesis and treatment with E2, but not ral, stimulates antibody production. The effects of las and bza on the immune system have not been studied. Therefore, the aim of this study was to investigate their role in B cell development, maturation, and function. C57BL/6 mice were sham‐operated or ovariectomized (ovx) and treated with vehicle, E2, ral, las, or bza. All substances increased total bone mineral density in ovx mice, as measured by peripheral quantitative computed tomography. In uterus, bza alone lacked agonistic effect in ovx mice and even acted as an antagonist in sham mice. As expected, E2 decreased B cell numbers at all developmental stages from pre‐BI cells (in bone marrow) to transitional 1 (T1) B cells (in spleen) and increased marginal zone (MZ) B cells as determined by flow cytometry. However, treatment with las or bza only decreased the last stages of bone marrow B cell development and splenic T1 B cells, but had no effect MZ B cells. E2 increased antibody‐producing cells quantified by ELISPOT, but las or bza did not. In conclusion, las and bza differ from E2 by retaining normal number of cells at most B cell stages during B lymphopoiesis and maturation and by not increasing antibody‐producing cells.

Collaboration


Dive into the Ulrika Islander's collaboration.

Top Co-Authors

Avatar

Hans Carlsten

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Jochems

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge