Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrike B. Hendgen-Cotta is active.

Publication


Featured researches published by Ulrike B. Hendgen-Cotta.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury

Ulrike B. Hendgen-Cotta; Marc W. Merx; Sruti Shiva; Joel Schmitz; Stefanie Becher; Johann P. Klare; Heinz-Jürgen Steinhoff; Axel Goedecke; Jürgen Schrader; Mark T. Gladwin; Malte Kelm; Tienush Rassaf

The nitrite anion is reduced to nitric oxide (NO•) as oxygen tension decreases. Whereas this pathway modulates hypoxic NO• signaling and mitochondrial respiration and limits myocardial infarction in mammalian species, the pathways to nitrite bioactivation remain uncertain. Studies suggest that hemoglobin and myoglobin may subserve a fundamental physiological function as hypoxia dependent nitrite reductases. Using myoglobin wild-type (+/+) and knockout (−/−) mice, we here test the central role of myoglobin as a functional nitrite reductase that regulates hypoxic NO• generation, controls cellular respiration, and therefore confirms a cytoprotective response to cardiac ischemia-reperfusion (I/R) injury. We find that myoglobin is responsible for nitrite-dependent NO• generation and cardiomyocyte protein iron-nitrosylation. Nitrite reduction to NO• by myoglobin dynamically inhibits cellular respiration and limits reactive oxygen species generation and mitochondrial enzyme oxidative inactivation after I/R injury. In isolated myoglobin+/+ but not in myoglobin−/− hearts, nitrite treatment resulted in an improved recovery of postischemic left ventricular developed pressure of 29%. In vivo administration of nitrite reduced myocardial infarction by 61% in myoglobin+/+ mice, whereas in myoglobin−/− mice nitrite had no protective effects. These data support an emerging paradigm that myoglobin and the heme globin family subserve a critical function as an intrinsic nitrite reductase that regulates responses to cellular hypoxia and reoxygenation. myoglobin knockout mice


Circulation Research | 2007

Nitrite Reductase Function of Deoxymyoglobin Oxygen Sensor and Regulator of Cardiac Energetics and Function

Tienush Rassaf; Ulrich Flögel; Christine Drexhage; Ulrike B. Hendgen-Cotta; Malte Kelm; Jürgen Schrader

Although the primary function of myoglobin (Mb) has been considered to be cellular oxygen storage and supply, recent studies have suggested to classify Mb as a multifunctional allosteric enzyme. In the heart, Mb acts as a potent scavenger of nitric oxide (NO) and contributes to the attenuation of oxidative damage. Here we report that a dynamic cycle exists in which a decrease in tissue oxygen tension drives the conversion of Mb from being an NO scavenger in normoxia to an NO producer in hypoxia. The NO generated by reaction of deoxygenated Mb with nitrite is functionally relevant and leads to a downregulation of cardiac energy status, which was not observed in mice lacking Mb. As a consequence, myocardial oxygen consumption is reduced and cardiac contractility is dampened in wild-type mice. We propose that this pathway represents a novel homeostatic mechanism by which a mismatch between oxygen supply and demand in muscle is translated into the fractional increase of deoxygenated Mb exhibiting enhanced nitrite reductase activity. Thus, Mb may act as an oxygen sensor which through NO can adjust muscle energetics to limited oxygen supply.


Circulation | 2012

Nitrite Regulates Hypoxic Vasodilation via Myoglobin-Dependent Nitric Oxide Generation

Matthias Totzeck; Ulrike B. Hendgen-Cotta; Peter Luedike; Michael Berenbrink; Johann P. Klare; Heinz-Juergen Steinhoff; Dominik Semmler; Sruti Shiva; Daryl R. Williams; Anja Kipar; Mark T. Gladwin; Juergen Schrader; Malte Kelm; Andrew R. Cossins; Tienush Rassaf

Background— Hypoxic vasodilation is a physiological response to low oxygen tension that increases blood supply to match metabolic demands. Although this response has been characterized for >100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin in the heart can reduce nitrite to nitric oxide (NO·) and thereby contribute to cardiomyocyte NO· signaling during ischemia. On the basis of recent observations that myoglobin is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular myoglobin to form NO·. Methods and Results— We show in the present study that myoglobin is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO· from nitrite reduction by deoxygenated myoglobin activates canonical soluble guanylate cyclase/cGMP signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO·, and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin. Hypoxic vasodilation studies in myoglobin and endothelial and inducible NO synthase knockout models suggest that only myoglobin contributes to systemic hypoxic vasodilatory responses in mice. Conclusions— Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO· via the heme globin myoglobin enhances blood flow and matches O2 supply to increased metabolic demands under hypoxic conditions.


Circulation | 2012

Dietary Nitrate Supplementation Improves Revascularization in Chronic Ischemia

Ulrike B. Hendgen-Cotta; Peter Luedike; Matthias Totzeck; Martina Kropp; Andreas Schicho; Pia Stock; Christos Rammos; Michael Niessen; Christian Heiss; Jon O. Lundberg; Eddie Weitzberg; Malte Kelm; Tienush Rassaf

Background— Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known. Methods and Results— Mice were treated with either nitrate (1 g/L sodium nitrate in drinking water) or sodium chloride (control) for 14 days. At day 7, unilateral hind-limb surgery with excision of the left femoral artery was conducted. Blood flow was determined by laser Doppler. Capillary density, myoblast apoptosis, mobilization of CD34+/Flk-1+, migration of bone marrow–derived CD31+/CD45−, plasma S-nitrosothiols, nitrite, and skeletal tissue cGMP levels were assessed. Enhanced green fluorescence protein transgenic mice were used for bone marrow transplantation. Dietary nitrate increased plasma S-nitrosothiols and nitrite, enhanced revascularization, increased mobilization of CD34+/Flk-1+ and migration of bone marrow–derived CD31+/CD45− cells to the site of ischemia, and attenuated apoptosis of potentially regenerative myoblasts in chronically ischemic tissue. The regenerative effects of nitrate treatment were abolished by eradication of the nitrate-reducing bacteria in the oral cavity through the use of an antiseptic mouthwash. Conclusions— Long-term dietary nitrate supplementation may represent a novel nutrition-based strategy to enhance ischemia-induced revascularization.


Circulation | 2012

Cardioprotection Through S-Nitros(yl)ation of Macrophage Migration Inhibitory Factor

Peter Luedike; Ulrike B. Hendgen-Cotta; Julia Sobierajski; Matthias Totzeck; Marcel Reeh; Manfred Dewor; Hongqi Lue; Christoph Krisp; Dirk Wolters; Malte Kelm; Jürgen Bernhagen; Tienush Rassaf

Background— Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra- and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions are poorly understood. Methods and Results— Here, we have identified an S-nitros(yl)ation modification of MIF that regulates the protective functional phenotype of MIF in myocardial reperfusion injury. Macrophage migration inhibitory factor contains 3 cysteine (Cys) residues; using recombinant wtMIF and site-specific MIF mutants, we have identified that Cys-81 is modified by S-nitros(yl)ation whereas the CXXC-derived Cys residues of MIF remained unaffected. The selective S-nitrosothiol formation at Cys-81 led to a doubling of the oxidoreductase activity of MIF. Importantly, S-nitrosothiol-MIF formation was measured both in vitro and in vivo and led to a decrease in cardiomyocyte apoptosis in the reperfused heart. This decrease was paralleled by a S-nitrosothiol-MIF– but not Cys81 serine (Ser)–MIF mutant–dependent reduction of infarct size in an in vivo model of myocardial ischemia/reperfusion injury. Conclusions— S-nitros(yl)ation of MIF is a pivotal novel regulatory mechanism, providing enhanced activity resulting in increased cytoprotection in myocardial reperfusion injury.


Free Radical Biology and Medicine | 2012

Dietary inorganic nitrate mobilizes circulating angiogenic cells.

Christian Heiss; Christian Meyer; Matthias Totzeck; Ulrike B. Hendgen-Cotta; Yvonne Heinen; Peter Luedike; Stefanie Keymel; Nassim Ayoub; Jon O. Lundberg; Eddie Weitzberg; Malte Kelm; Tienush Rassaf

Nitric oxide (NO) was implicated in the regulation of mobilization and function of circulating angiogenic cells (CACs). The supposedly inert anion nitrate, abundant in vegetables, can be stepwise reduced in vivo to form nitrite, and consecutively NO, representing an alternative to endogenous NO formation by NO synthases. This study investigated whether inorganic dietary nitrate influences mobilization of CACs. In a randomized double-blind fashion, healthy volunteers ingested 150 ml water with 0.15 mmol/kg (12.7 mg/kg) of sodium nitrate, an amount corresponding to 100-300 g of a nitrate-rich vegetable, or water alone as control. Mobilization of CACs was determined by the number of CD34(+)/KDR(+) and CD133(+)/KDR(+) cells using flow cytometry and the mobilization markers stem cell factor (SCF) and stromal cell-derived factor-1a (SDF-1α) were determined in plasma via ELISA. Nitrite and nitrate were measured using high-performance liquid chromatography and reductive gas-phase chemiluminescence, respectively. NOS-dependent vasodilation was measured as flow-mediated vasodilation. Further mechanistic studies were performed in mice after intravenous application of nitrite together with an NO scavenger to identify the role of nitrite and NO in CAC mobilization. Nitrate ingestion led to a rise in plasma nitrite together with an acute increase in CD34(+)/KDR(+) and CD133(+)/KDR(+)-CACs along with increased NOS-dependent vasodilation. This was paralleled by an increase in SCF and SDF-1α and the maximal increase in plasma nitrite correlated with CD133(+)/KDR(+)-CACs (r=0.73, P=0.016). In mice, nitrate given per gavage and direct intravenous injection of nitrite led to CAC mobilization, which was abolished by the NO scavenger cPTIO, suggesting that nitrite mediated its effect via formation of NO. Dietary inorganic nitrate acutely mobilizes CACs via serial reduction to nitrite and NO. The nitrate-nitrite-NO pathway could offer a novel nutritional approach for regulation of vascular regenerative processes.


The Journal of Experimental Biology | 2010

Unmasking the Janus face of myoglobin in health and disease

Ulrike B. Hendgen-Cotta; Ulrich Flögel; Malte Kelm; Tienush Rassaf

SUMMARY For more than 100 years, myoglobin has been among the most extensively studied proteins. Since the first comprehensive review on myoglobin function as a dioxygen store by Millikan in 1939 and the discovery of its structure 50 years ago, multiple studies have extended our understanding of its occurrence, properties and functions. Beyond the two major roles, the storage and the facilitation of dioxygen diffusion, recent physiological studies have revealed that myoglobin acts as a potent scavenger of nitric oxide (NO•) representing a control system that preserves mitochondrial respiration. In addition, myoglobin may also protect the heart against reactive oxygen species (ROS), and, under hypoxic conditions, deoxygenated myoglobin is able to reduce nitrite to NO• leading to a downregulation of the cardiac energy status and to a decreased heart injury after reoxygenation. Thus, by controlling the NO• bioavailability via scavenging or formation, myoglobin serves as part of a sensitive dioxygen sensory system. In this review, the physiological relevance of these recent findings are delineated for pathological states where NO• and ROS bioavailability are known to be critical determinants for the outcome of the disease, e.g. ischemia/reperfusion injury. Detrimental and beneficial effects of the presence of myoglobin are discussed for various states of tissue oxygen tension within the heart and skeletal muscle. Furthermore, the impact of myoglobin on parasite infection, rhabdomyolysis, hindlimb and liver ischemia, angiogenesis and tumor growth are considered.


Nitric Oxide | 2012

Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes

Matthias Totzeck; Ulrike B. Hendgen-Cotta; Christos Rammos; Lisa-Marie Frommke; Christian Knackstedt; Hans-Georg Predel; Malte Kelm; Tienush Rassaf

Factors improving exercise capacity in highly trained individuals are of major interest. Recent studies suggest that the dietary intake of inorganic nitrate may enhance athletic performance. This has been related to the stepwise in vivo bioactivation of nitrate to nitrite and nitric oxide (NO) with the modulation of mitochondrial function. Here we show that higher baseline levels of nitrite are associated with a superior exercise capacity in highly trained athletes independent of endothelial function. Eleven male athletes were enrolled in this investigation and each participant reported twice to the testing facility (total of n=22 observations). Venous blood was obtained to determine the levels of circulating plasma nitrite and nitrate. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD). Hereafter, participants completed a stepwise bicycle exercise test until exhaustion. Blood was drawn from the ear lope to determine the levels of lactate. Lactate anaerobic thresholds (LAT) in relation to heart rate were calculated using non-linear regression models. Baseline plasma nitrite levels correlated with LATs (r=0.65; p=0.001, n=22) and with endothelial function as assessed by FMD (r=0.71; p=0.0002). Correlation coefficients from both testing days did not differ. Multiple linear regressions showed that baseline plasma nitrite level but not endothelial function was an independent predictor of exercise capacity. No such correlations were determined for plasma nitrate levels.


Clinical Journal of The American Society of Nephrology | 2016

Vasculoprotective Effects of Dietary Cocoa Flavanols in Patients on Hemodialysis: A Double–Blind, Randomized, Placebo–Controlled Trial

Tienush Rassaf; Christos Rammos; Ulrike B. Hendgen-Cotta; Christian Heiss; Werner Kleophas; Frank Dellanna; Jürgen Floege; Gerd R. Hetzel; Malte Kelm

BACKGROUND AND OBJECTIVES Hemodialysis (HD) per se entails vascular dysfunction in patients with ESRD. Endothelial dysfunction is a key step in atherosclerosis and is characterized by impaired flow-mediated dilation (FMD). Interventional studies have shown that cocoa flavanol (CF)-rich supplements improve vascular function. Aim of this study was to investigate the effect of flavanol-rich bioactive food ingredients on acute and chronic HD-induced vascular dysfunction in ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted a randomized, double-blind, placebo-controlled trial from 2012 to 2013. Fifty-seven participants were enrolled, ingested CF-rich beverages (900 mg CF per study day), and were compared with those ingesting CF-free placebo. This included (1) a baseline cross-over acute study to determine safety and efficacy of CF and (2) a subsequent chronic parallel group study with a 30-day follow-up period to study effects of CF on HD-mediated vascular dysfunction entailing (3) an acute substudy during HD in flavanol-naive patients and (4) an acute on chronic study during HD. Primary and secondary outcome measures included changes in FMD and hemodynamics. RESULTS CF ingestion was well tolerated. Acute ingestion improved FMD by 53% (3.2±0.6% to 4.8±0.9% versus placebo, 3.2±0.7% to 3.3±0.8%; P<0.001), with no effects on BP or heart rate. A 30-day ingestion of CF led to an increase in baseline FMD by 18% (3.4±0.9% to 3.9±0.8% versus placebo, 3.5±0.7% to 3.5±0.7%; P<0.001), with reduced diastolic BP (73±12 to 69±11 mmHg versus placebo, 70±11 to 73±13 mmHg; P=0.03) and increased heart rate (70±12 to 74±13 bpm versus placebo, 75±15 to 74±13 bpm; P=0.01). No effects were observed for placebo. Acute ingestion of CF during HD alleviated HD-induced vascular dysfunction (3.4±0.9% to 2.7±0.6% versus placebo, 3.5±0.7% to 2.0±0.6%; P<0.001). This effect was sustained throughout the study (acute on chronic, 3.9±0.9% to 3.0±0.7% versus placebo, 3.5±0.7% to 2.2±0.6; P=0.01). CONCLUSIONS Dietary CF ingestion mitigates acute HD-induced and chronic endothelial dysfunction in patients with ESRD and thus, improves vascular function in this high-risk population. Larger clinical trials are warranted to test whether this translates into an improved cardiovascular prognosis in patients with ESRD.


European Journal of Heart Failure | 2016

Impact of dietary nitrate on age-related diastolic dysfunction.

Christos Rammos; Ulrike B. Hendgen-Cotta; Matthias Totzeck; Julia Pohl; Peter Lüdike; Ulrich Flögel; René Deenen; Karl Köhrer; Brent A. French; Axel Gödecke; Malte Kelm; Tienush Rassaf

Diastolic dysfunction is highly prevalent, and ageing is the main contributor due to impairments in active cardiac relaxation, ventriculo‐vascular stiffening, and endothelial dysfunction. Nitric oxide (NO) affects cardiovascular functions, and NO bioavailability is critically reduced with ageing. Whether replenishment of NO deficiency with dietary inorganic nitrate would offer a novel approach to reverse age‐related cardiovascular alterations was not known.

Collaboration


Dive into the Ulrike B. Hendgen-Cotta's collaboration.

Top Co-Authors

Avatar

Tienush Rassaf

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Malte Kelm

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Luedike

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ulrich Flögel

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Christian Heiss

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge