Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrike G. K. Wegst is active.

Publication


Featured researches published by Ulrike G. K. Wegst.


Nature Materials | 2015

Bioinspired structural materials.

Ulrike G. K. Wegst; Hao Bai; Eduardo Saiz; Antoni P. Tomsia; Robert O. Ritchie

Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.


Philosophical Magazine | 2004

The mechanical efficiency of natural materials

Ulrike G. K. Wegst; Michael F. Ashby

The materials of nature, for example cellulose, lignin, keratin, chitin, collagen and hydroxyapatite, and the structures made from them, for example bamboo, wood, antler and bone, have a remarkable range of mechanical properties. These can be compared by presenting them as material property charts, well known for the materials of engineering. Material indices (significant combinations of properties) can be plotted on to the charts, identifying materials with extreme values of an index, suggesting that they have evolved to carry particular modes of loading, or to sustain large tensile or flexural deformations, without failure. This paper describes a major revision and update of a set of property charts for natural material published some 8 years ago by Ashby et al. with examples of their use to study mechanical efficiency in nature.


Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 1995

The mechanical properties of natural materials. I. Material property charts

Michael F. Ashby; Lorna J. Gibson; Ulrike G. K. Wegst; R Olive

The mechanical properties of natural materials as diverse as wood, muscle, shell and bone are plotted on material-property charts which show the relationships between properties. Performance indices are used to identify the load-bearing applications in which each performs particularly well. By these criteria, many natural materials are superior to the man-made materials of engineering. A companion paper examines some of the origins of this superiority; an explanation is sought in an analysis of the way structure influences properties.


Philosophical Transactions of the Royal Society A | 2010

Biomaterials by freeze casting

Ulrike G. K. Wegst; Matthew Schecter; Amalie E. Donius; Philipp M. Hunger

The functional requirements for synthetic tissue substitutes appear deceptively simple: they should provide a porous matrix with interconnecting porosity and surface properties that promote rapid tissue ingrowth; at the same time, they should possess sufficient stiffness, strength and toughness to prevent crushing under physiological loads until full integration and healing are reached. Despite extensive efforts and first encouraging results, current biomaterials for tissue regeneration tend to suffer common limitations: insufficient tissue–material interaction and an inherent lack of strength and toughness associated with porosity. The challenge persists to synthesize materials that mimic both structure and mechanical performance of the natural tissue and permit strong tissue–implant interfaces to be formed. In the case of bone substitute materials, for example, the goal is to engineer high-performance composites with effective properties that, similar to natural mineralized tissue, exceed by orders of magnitude the properties of its constituents. It is still difficult with current technology to emulate in synthetic biomaterials multi-level hierarchical composite structures that are thought to be the origin of the observed mechanical property amplification in biological materials. Freeze casting permits to manufacture such complex, hybrid materials through excellent control of structural and mechanical properties. As a processing technique for the manufacture of biomaterials, freeze casting therefore has great promise.


Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | 1995

The mechanical properties of natural materials, II. Microstructures for mechanical efficiency

Lorna J. Gibson; Michael F. Ashby; Gn Karam; Ulrike G. K. Wegst; Hr Shercliff

Many natural materials have exceptionally high values of the mechanical performance indices described in the previous, companion paper. For beams and plates of a given stiffness or strength, or for a column of a given buckling resistance, woods, palms and bamboo are among the most efficient materials available. Their mechanical efficiency arises from their combination of composite and cellular microstructures. In this paper we analyse the microstructures which give rise to exceptional performance, describe the fabrication and testing of model materials with those microstructures and discuss the implications for design of mechanically efficient engineering materials.


American Journal of Botany | 2006

Wood for sound

Ulrike G. K. Wegst

The unique mechanical and acoustical properties of wood and its aesthetic appeal still make it the material of choice for musical instruments and the interior of concert halls. Worldwide, several hundred wood species are available for making wind, string, or percussion instruments. Over generations, first by trial and error and more recently by scientific approach, the most appropriate species were found for each instrument and application. Using material property charts on which acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient are plotted against one another for woods. We analyze and explain why spruce is the preferred choice for soundboards, why tropical species are favored for xylophone bars and woodwind instruments, why violinists still prefer pernambuco over other species as a bow material, and why hornbeam and birch are used in piano actions.


Dental Materials | 2013

Perspectives on the role of nanotechnology in bone tissue engineering

Eduardo Saiz; Elizabeth A. Zimmermann; Janice S. Lee; Ulrike G. K. Wegst; Antoni P. Tomsia

OBJECTIVE This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. METHODS The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nanolevel internal surfaces of scaffolds are examined followed by an evaluation of techniques using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. RESULTS Through a review of the state of the field, critical questions are posed to guide future research toward producing materials and therapies to bring state-of-the-art technology to clinical settings. SIGNIFICANCE The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants.


Acta Biomaterialia | 2013

Structure-property-processing correlations in freeze-cast composite scaffolds.

Philipp M. Hunger; Amalie E. Donius; Ulrike G. K. Wegst

Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Youngs modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting

Amalie E. Donius; Andong Liu; Lars Berglund; Ulrike G. K. Wegst

Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C.


Journal of Biomedical Materials Research Part A | 2013

An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering

Nicola L. Francis; Philipp M. Hunger; Amalie E. Donius; Benjamin W. Riblett; Antonios Zavaliangos; Ulrike G. K. Wegst; Margaret A. Wheatley

Several strategies have been investigated to enhance axonal regeneration after spinal cord injury, however, the resulting growth can be random and disorganized. Bioengineered scaffolds provide a physical substrate for guidance of regenerating axons towards their targets, and can be produced by freeze casting. This technique involves the controlled directional solidification of an aqueous solution or suspension, resulting in a linearly aligned porous structure caused by ice templating. In this study, freeze casting was used to fabricate porous chitosan-alginate (C/A) scaffolds with longitudinally oriented channels. Chick dorsal root ganglia explants adhered to and extended neurites through the scaffold in parallel alignment with the channel direction. Surface adsorption of a polycation and laminin promoted significantly longer neurite growth than the uncoated scaffold (poly-L-ornithine + Laminin = 793.2 ± 187.2 μm; poly-L-lysine + Laminin = 768.7 ± 241.2 μm; uncoated scaffold = 22.52 ± 50.14 μm) (P < 0.001). The elastic modulus of the hydrated scaffold was determined to be 5.08 ± 0.61 kPa, comparable to reported spinal cord values. The present data suggested that this C/A scaffold is a promising candidate for use as a nerve guidance scaffold, because of its ability to support neuronal attachment and the linearly aligned growth of DRG neurites.

Collaboration


Dive into the Ulrike G. K. Wegst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Saiz

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Antoni P. Tomsia

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice S. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge