Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrike Koehl is active.

Publication


Featured researches published by Ulrike Koehl.


Nature Medicine | 2010

Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease

Stefan Stein; Marion Ott; Stephan Schultze-Strasser; Anna Jauch; Barbara Burwinkel; Andrea Kinner; Manfred Schmidt; Alwin Krämer; Joachim Schwäble; Hanno Glimm; Ulrike Koehl; Carolin Preiss; Claudia R. Ball; Hans Martin; Gudrun Göhring; Kerstin Schwarzwaelder; Wolf K. Hofmann; Kadin Karakaya; Sandrine Tchatchou; Rongxi Yang; Petra Reinecke; Klaus Kühlcke; Brigitte Schlegelberger; Adrian J. Thrasher; Dieter Hoelzer; Reinhard Seger; Christof von Kalle; Manuel Grez

Gene-modified autologous hematopoietic stem cells (HSC) can provide ample clinical benefits to subjects suffering from X-linked chronic granulomatous disease (X-CGD), a rare inherited immunodeficiency characterized by recurrent, often life-threatening bacterial and fungal infections. Here we report on the molecular and cellular events observed in two young adults with X-CGD treated by gene therapy in 2004. After the initial resolution of bacterial and fungal infections, both subjects showed silencing of transgene expression due to methylation of the viral promoter, and myelodysplasia with monosomy 7 as a result of insertional activation of ecotropic viral integration site 1 (EVI1). One subject died from overwhelming sepsis 27 months after gene therapy, whereas a second subject underwent an allogeneic HSC transplantation. Our data show that forced overexpression of EVI1 in human cells disrupts normal centrosome duplication, linking EVI1 activation to the development of genomic instability, monosomy 7 and clonal progression toward myelodysplasia.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy.

Ken-ichiro Sasaki; Christopher Heeschen; Alexandra Aicher; Thomas Ziebart; Joerg Honold; Carmen Urbich; Lothar Rössig; Ulrike Koehl; Masamichi Koyanagi; Annisuddin Mohamed; Ralf P. Brandes; Hans Martin; Andreas M. Zeiher; Stefanie Dimmeler

Bone marrow mononuclear cells (BMC) from patients with ischemic cardiomyopathy (ICMP) show a reduced neovascularization capacity in vivo. NO plays an important role in neovascularization, and NO bioavailability is typically reduced in patients with ICMP. We investigated whether the impaired neovascularization capacity of ICMP patient-derived progenitor cells can be restored by pretreatment with the novel endothelial NO synthase (eNOS) transcription enhancer AVE9488 (AVE). Ex vivo pretreatment of BMC from patients with ICMP with AVE significantly increased eNOS mRNA expression by 2.1-fold (P < 0.05) and eNOS activity as assessed by ESR by >3-fold (P < 0.05). The increased eNOS expression was associated with an enhanced migratory capacity in vitro (P < 0.01) and improved neovascularization capacity of the infused BMC in an ischemic hind limb model in vivo (P < 0.001). The improvement in ischemic limb perfusion after infusion of AVE-pretreated BMC resulted in an increase in swimming time (P < 0.05). The enhancement of limb perfusion by AVE-treated BMC was abrogated by ex vivo pretreatment with the eNOS inhibitor NG-nitro-l-arginine methyl ester. Consistently, AVE showed no effect on the impaired migratory capacity of BMC derived from eNOS-deficient mice, documenting the specific involvement of NO. The reduced neovascularization capacity of BMC from patients with ICMP may limit their therapeutic potential in cell therapy studies. Here, we show that pharmacological enhancement of eNOS expression with AVE at least partially reverses the impaired functional activity of BMC from ICMP patients, highlighting the critical role of NO for progenitor cell function.


Molecular Therapy | 2008

Targeted Cell Entry of Lentiviral Vectors

Sabrina Funke; Andrea Maisner; Michael D. Mühlebach; Ulrike Koehl; Manuel Grez; Roberto Cattaneo; Klaus Cichutek; Christian J. Buchholz

Retargeting of lentiviral vector entry to cell types of interest is a key factor in improving the safety and efficacy of gene transfer. In this study we show that the retargetable envelope glycoproteins of measles virus (MV), namely, the hemagglutinin (H) responsible for receptor recognition and the fusion protein (F), can pseudotype human immunodeficiency virus 1 (HIV-1) vectors when their cytoplasmic tails are truncated. We then pseudotyped HIV-1 vectors with MV glycoproteins displaying on H either the epidermal growth factor or a single-chain antibody directed against CD20, but without the ability to recognize their native receptors. Gene transfer into cells that expressed the targeted receptor was several orders of magnitude more efficient than into cells that did not. High-target versus nontarget cell discrimination was demonstrated in mixed cell populations, where the targeting vector selectively eliminated CD20-positive cells after suicide gene transfer. Remarkably, primary human CD20-positive B lymphocytes were transduced more efficiently by the CD20-targeted vector than by a vector pseudotyped with the vesicular stomatitis virus G (VSV-G) protein. In addition, the CD20-targeted vector was able to transduce even unstimulated primary B cells, whereas VSV-G pseudotyped vectors were unable to do so. Because MV enters cells through direct fusion at the cell membrane, this novel targeting system should be widely applicable.


Nature Methods | 2010

Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors

Brigitte Anliker; Tobias Abel; Sabrina Kneissl; Juraj Hlavaty; Antonio Caputi; Julia Brynza; Irene C. Schneider; Robert C. Münch; Helga Petznek; Roland E. Kontermann; Ulrike Koehl; Ian C.D. Johnston; Kari Keinänen; Ulrike Müller; Christine Hohenadl; Hannah Monyer; Klaus Cichutek; Christian J. Buchholz

We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105+ endothelial cells, human CD133+ hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133+ cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.


Haematologica | 2010

CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties

Selim Kuçi; Zyrafete Kuçi; Hermann Kreyenberg; Erika Deak; Kathrin Pütsch; Sabine Huenecke; Chandrasekhar Amara; Stefanie Koller; Eva Rettinger; Manuel Grez; Ulrike Koehl; Hatixhe Latifi-Pupovci; Reinhard Henschler; Torsten Tonn; Dorothee von Laer; Thomas Klingebiel; Peter Bader

Background In vitro proliferative and differentiation potential of mesenchymal stromal cells generated from CD271+ bone marrow mononuclear cells (CD271-mesenchymal stromal cells) has been demonstrated in several earlier and recent reports. In the present study we focused, in addition to proliferative and differentiation potential, on in vitro and in vivo immunosuppressive and lymphohematopoietic engraftment-promoting potential of these mesenchymal stromal cells compared to bone marrow-derived mesenchymal stromal cells generated by plastic adherence (plastic adherence-mesenchymal stromal cells). Design and Methods We set up a series of experimental protocols in order to determine the phenotype of CD271-mesenchymal stromal cells, and their clonogenic, proliferative, differentiation and immunosuppressive potential. The potential of CD271-mesenchymal stromal cells to improve the engraftment of CD133+ hematopoietic stem cells at co-transplantation was evaluated in immunodeficient NOD/SCID-IL2Rγnull mice. Results In vitro studies demonstrated that CD271-mesenchymal stromal cells differentiate along adipogenic, osteogenic and chondrogenic lineages (trilineage potential), produce significantly higher levels of cytokines than plastic adherence-mesenchymal stromal cells, and significantly inhibit the proliferation of allogeneic T-lymphocytes in mixed lymphocyte reaction assays. Elevated levels of prostaglandin E2, but not nitric monoxide, mediated the majority of this immunosuppressive effect. In vivo studies showed that CD271-mesenchymal stromal cells promoted significantly greater lymphoid engraftment than did plastic adherence-mesenchymal stromal cells when co-transplanted with CD133+ hematopoietic stem cells at a ratio of 8:1 in immunodeficient NOD/SCID-IL2Rγnull mice. They induced a 10.4-fold increase in the number of T cells, a 2.5-fold increase in the number of NK cells, and a 3.6-fold increase in the number of B cells, indicating a major qualitative difference between these two mesenchymal stromal cell populations. Conclusions Our results indicate that CD271 antigen provides a versatile marker for prospective isolation and expansion of multipotent mesenchymal stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. The co-transplantation of such cells together with hematopoietic stem cells in patients with hematologic malignancies may prove valuable in the prevention of impaired/delayed T-cell recovery and graft-versus-host disease.


Bone Marrow Transplantation | 2013

Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers

Martin Stern; Jakob Passweg; Sandrine Meyer-Monard; Ruth Esser; T Tonn; Jan Soerensen; Michael Paulussen; A Gratwohl; Thomas Klingebiel; Peter Bader; André Tichelli; Dirk Schwabe; Ulrike Koehl

Adoptive immunotherapy with allogeneic purified natural killer (NK) cell products might exert graft-versus-tumor alloreactivity with little risk of GVHD. In a prospective phase II study in two centers, we administered purified NK cell products to high-risk patients treated with haploidentical T-cell-depleted SCT. Sixteen patients received a total of 29 NK cell infusions on days +3, +40 and +100 after transplantation. Median doses (and ranges) of infused NK- and T-cells per product were 1.21 (0.3–3.8) × 107/kg and 0.03 (0.004–0.72) × 105/kg, respectively. With a median follow-up of 5.8 years 4/16 patients are alive. Cause of death was relapse in five, GVHD in three, graft failure in three, and transplant related neurotoxicity in one patient. Four patients developed acute GVHD⩾grade II, all receiving a total of ⩾0.5 × 105 T cells/kg. Compared with historical controls, NK cell infusions had no apparent effect on the rates of graft failure or relapse. Adoptive transfer of allogeneic NK cells is safe and feasible, but further studies are needed to determine the optimal dose and timing of NK cell therapy. Moreover, NK cell activation/expansion may be required to attain clinical benefit, while careful consideration must be given to the number of T cells infused.


Journal of Cellular and Molecular Medicine | 2012

NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin.

Ruth Esser; Tina Müller; Dörthe Stefes; Stephan Kloess; Diana Seidel; Stephen D. Gillies; Christel Aperlo-Iffland; James S. Huston; Christoph Uherek; Kurt Schönfeld; Torsten Tonn; Nicole Huebener; Holger N. Lode; Ulrike Koehl; Winfried S. Wels

Treatment of high‐risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD2, which is expressed at high levels on NB cells, and infusion of donor‐derived natural killer (NK) cells. To combine specific antibody‐mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK‐92 that stably express a GD2‐specific chimeric antigen receptor (CAR) comprising an anti‐GD2 ch14.18 single chain Fv antibody fusion protein with CD3‐ζ chain as a signalling moiety. CAR expression by gene‐modified NK cells facilitated effective recognition and elimination of established GD2 expressing NB cells, which were resistant to parental NK‐92. In the case of intrinsically NK‐sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK‐92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD2‐specific antibody or anti‐idiotypic antibody occupying the CAR’s cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD2‐specific NK cells was also found against primary NB cells and GD2 expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.


Bone Marrow Transplantation | 2005

Use of natural killer cells in hematopoetic stem cell transplantation

Jakob Passweg; Martin Stern; Ulrike Koehl; Lutz Uharek; André Tichelli

Summary:Adoptive immunotherapy using natural killer (NK) cells may prove useful, especially in situations where infusion of T cells is impractical such as in recipients of haploidentical stem cell transplantation (HSCT) from haploidentical donors. NK cells may induce potent antileukemic and possibly antirejection activity and may even mitigate graft versus host disease (GvHD). Whether such effects are clinically important and whether they are mediated mainly or exclusively by KIR–HLA class I interactions remains to be determined. Recent advances in graft engineering provide for methods to isolate large numbers of purified NK cells. Several groups have shown that clinical grade NK cells up to a dose of 107/kg may be collected and purified for the purpose of infusion to patients. Early results, in a limited number of patients, show that these cell doses may be administered without adverse events and without inducing GvHD. Whether such infusions will be useful in preventing graft rejection, or exerting graft versus leukemia effects and hastening immune recovery requires further study.


Frontiers in Pharmacology | 2015

Advantages and applications of CAR-expressing natural killer cells

Wolfgang Glienke; Ruth Esser; Christoph Priesner; Julia D. Suerth; Axel Schambach; Winfried S. Wels; Manuel Grez; Stephan Kloess; Lubomir Arseniev; Ulrike Koehl

In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.


The Journal of Infectious Diseases | 2011

Human Natural Killer Cells Exhibit Direct Activity Against Aspergillus fumigatus Hyphae, But Not Against Resting Conidia

Stanislaw Schmidt; Lars Tramsen; Mitra Hanisch; Jean-Paul Latgé; Sabine Huenecke; Ulrike Koehl; Thomas Lehrnbecher

Because natural killer (NK) cells kill tumor cells and combat infections, there is growing interest in adoptively transferring NK cells to hematopoietic stem cell recipients. Unfortunately, in humans, the activity of NK cells against Aspergillus species, the major cause of invasive fungal infection in stem cell recipients, are poorly characterized. Our results show that unstimulated and interleukin-2 prestimulated human NK cells kill Aspergillus fumigatus hyphae but do not affect resting conidia. Killing is also induced by the supernatant of prestimulated NK cells and human perforin. The high levels of interferon-γ and granulocyte macrophage colony-stimulating factor produced by prestimulated NK cells are significantly reduced by Aspergillus, indicating an immunosuppressive effect of the fungus. Whereas Aspergillus hyphae activate NK cells, resting, and germinating, conidia and conidia of ΔrodA mutants lacking the hydrophobic surface layer do not. Our results suggest that adoptively transferred human NK cells may be a potential antifungal tool in the transplantation context.

Collaboration


Dive into the Ulrike Koehl's collaboration.

Top Co-Authors

Avatar

Thomas Klingebiel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Peter Bader

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Ruth Esser

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Sabine Huenecke

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Thomas Lehrnbecher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dirk Schwabe

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Lars Tramsen

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Manuel Grez

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Quaiser

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge