Ulrike Wittig
Heidelberg Institute for Theoretical Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrike Wittig.
Nucleic Acids Research | 2012
Ulrike Wittig; Renate Kania; Martin Golebiewski; Maja Rey; Lei Shi; Lenneke Jong; Enkhjargal Algaa; Andreas Weidemann; Heidrun Sauer-Danzwith; Saqib Mir; Olga Krebs; Meik Bittkowski; Isabel Rojas; Wolfgang Müller
SABIO-RK (http://sabio.h-its.org/) is a web-accessible database storing comprehensive information about biochemical reactions and their kinetic properties. SABIO-RK offers standardized data manually extracted from the literature and data directly submitted from lab experiments. The database content includes kinetic parameters in relation to biochemical reactions and their biological sources with no restriction on any particular set of organisms. Additionally, kinetic rate laws and corresponding equations as well as experimental conditions are represented. All the data are manually curated and annotated by biological experts, supported by automated consistency checks. SABIO-RK can be accessed via web-based user interfaces or automatically via web services that allow direct data access by other tools. Both interfaces support the export of the data together with its annotations in SBML (Systems Biology Markup Language), e.g. for import in modelling tools.
data integration in the life sciences | 2006
Ulrike Wittig; Martin Golebiewski; Renate Kania; Olga Krebs; Saqib Mir; Andreas Weidemann; Stefanie Anstein; Jasmin Saric; Isabel Rojas
Simulating networks of biochemical reactions require reliable kinetic data. In order to facilitate the access to such kinetic data we have developed SABIO-RK, a curated database with information about biochemical reactions and their kinetic properties. The data are manually extracted from literature and verified by curators, concerning standards, formats and controlled vocabularies. This process is supported by tools in a semi-automatic manner. SABIO-RK contains and merges information about reactions such as reactants and modifiers, organism, tissue and cellular location, as well as the kinetic properties of the reactions. The type of the kinetic mechanism, modes of inhibition or activation, and corresponding rate equations are presented together with their parameters and measured values, specifying the experimental conditions under which these were determined. Links to other databases enable the user to gather further information and to refer to the original publication. Information about reactions and their kinetic data can be exported to an SBML file, allowing users to employ the information as the basis for their simulation models.
BMC Systems Biology | 2007
Isabel Rojas; Martin Golebiewski; Renate Kania; Olga Krebs; Saqib Mir; Andreas Weidemann; Ulrike Wittig
Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics), a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.
FEBS Journal | 2010
Neil Swainston; Martin Golebiewski; Hanan L. Messiha; Naglis Malys; Renate Kania; Sylvestre Kengne; Olga Krebs; Saqib Mir; Heidrun Sauer-Danzwith; Kieran Smallbone; Andreas Weidemann; Ulrike Wittig; Douglas B. Kell; Pedro Mendes; Wolfgang Müller; Norman W. Paton; Isabel Rojas
A limited number of publicly available resources provide access to enzyme kinetic parameters. These have been compiled through manual data mining of published papers, not from the original, raw experimental data from which the parameters were calculated. This is largely due to the lack of software or standards to support the capture, analysis, storage and dissemination of such experimental data. Introduced here is an integrative system to manage experimental enzyme kinetics data from instrument to browser. The approach is based on two interrelated databases: the existing SABIO‐RK database, containing kinetic data and corresponding metadata, and the newly introduced experimental raw data repository, MeMo‐RK. Both systems are publicly available by web browser and web service interfaces and are configurable to ensure privacy of unpublished data. Users of this system are provided with the ability to view both kinetic parameters and the experimental raw data from which they are calculated, providing increased confidence in the data. A data analysis and submission tool, the kineticswizard, has been developed to allow the experimentalist to perform data collection, analysis and submission to both data resources. The system is designed to be extensible, allowing integration with other manufacturer instruments covering a range of analytical techniques.
Comparative and Functional Genomics | 2003
Esther Ratsch; Jörg Schultz; Jasmin Saric; Philipp Cimiano Lavin; Ulrike Wittig; Uwe Reyle; Isabel Rojas
The prediction and analysis of a protein’s function is an ongoing challenge in the field of genomics. With upcoming datasets on protein interactions [9], it is becoming evident that the function of a protein can only be understood when taking its interaction with other molecules into account. Most current approaches to the classification and description of protein function, such as the Gene Ontology [8], focus on single proteins. These annotation efforts should be paralleled by the development of ontologies dealing with the interactions of a protein with other biomolecules. Currently, most approaches to building such ontologies focus on metabolism [3,6]. So far, for interactions, only high-level classifications have been created [4], developed to assist information extraction from text. In addition to assisting text mining, a more fine-grained (in comparison to these classifications) ontology on protein interactions could be helpful in database development and information mining. As an ontology captures domain knowledge in a computer-understandable way, it can be used for inferencing, i.e. deriving new knowledge from existing data. There are two important points to consider in developing such a formal ontology: (a) it should be independent of its final use; and (b) it should not only restrict itself to a controlled vocabulary but the concepts should be related to each other in a semantically consistent manner, and rules governing these definitions and relations should be incorporated whenever necessary. Here we describe our approach for developing such an ontology.
FEBS Journal | 2014
Ulrike Wittig; Maja Rey; Renate Kania; Meik Bittkowski; Lei Shi; Martin Golebiewski; Andreas Weidemann; Wolfgang Müller; Isabel Rojas
The scientific literature contains a tremendous amount of kinetic data describing the dynamic behaviour of biochemical reactions over time. These data are needed for computational modelling to create models of biochemical reaction networks and to obtain a better understanding of the processes in living cells. To extract the knowledge from the literature, biocurators are required to understand a paper and interpret the data. For modellers, as well as experimentalists, this process is very time consuming because the information is distributed across the publication and, in most cases, is insufficiently structured and often described without standard terminology. In recent years, biological databases for different data types have been developed. The advantages of these databases lie in their unified structure, searchability and the potential for augmented analysis by software, which supports the modelling process. We have developed the SABIO‐RK database for biochemical reaction kinetics. In the present review, we describe the challenges for database developers and curators, beginning with an analysis of relevant publications up to the export of database information in a standardized format. The aim of the present review is to draw the experimentalists attention to the problem (from a data integration point of view) of incompletely and imprecisely written publications. We describe how to lower the barrier to curators and improve this situation. At the same time, we are aware that curating experimental data takes time. There is a community concerned with making the task of publishing data with the proper structure and annotation to ontologies much easier. In this respect, we highlight some useful initiatives and tools.
Journal of Integrative Bioinformatics | 2007
Olga Krebs; Martin Golebiewski; Renate Kania; Saqib Mir; Jasmin Saric; Andreas Weidemann; Ulrike Wittig; Isabel Rojas
Abstract Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics), a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.
Journal of Integrative Bioinformatics | 2013
Lei Shi; Lenneke Jong; Ulrike Wittig; Philippe Lucarelli; Markus Stepath; Stephanie Mueller; Lorenza A. D'Alessandro; Ursula Klingmüller; Wolfgang Müller
In systems biology, quantitative experimental data is the basis of building mathematical models. In most of the cases, they are stored in Excel files and hosted locally. To have a public database for collecting, retrieving and citing experimental raw data as well as experimental conditions is important for both experimentalists and modelers. However, the great effort needed in the data handling procedure and in the data submission procedure becomes the crucial limitation for experimentalists to contribute to a database, thereby impeding the database to deliver its benefit. Moreover, manual copy and paste operations which are commonly used in those procedures increase the chance of making mistakes. Excemplify, a web-based application, proposes a flexible and adaptable template-based solution to solve these problems. Comparing to the normal template based uploading approach, which is supported by some public databases, rather than predefining a format that is potentiall impractical, Excemplify allows users to create their own experiment-specific content templates in different experiment stages and to build corresponding knowledge bases for parsing. Utilizing the embedded knowledge of used templates, Excemplify is able to parse experimental data from the initial setup stage and generate following stages spreadsheets automatically. The proposed solution standardizes the flows of data traveling according to the standard procedures of applying the experiment, cuts down the amount of manual effort and reduces the chance of mistakes caused by manual data handling. In addition, it maintains the context of meta-data from the initial preparation manuscript and improves the data consistency. It interoperates and complements RightField and SEEK as well.
Nucleic Acids Research | 2018
Ulrike Wittig; Maja Rey; Andreas Weidemann; Renate Kania; Wolfgang Müller
Abstract SABIO-RK (http://sabiork.h-its.org/) is a manually curated database containing data about biochemical reactions and their reaction kinetics. The data are primarily extracted from scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions and is not restricted to any organism class. The data are made available to the public by a web-based search interface and by web services for programmatic access. In this update we describe major improvements and extensions of SABIO-RK since our last publication in the database issue of Nucleic Acid Research (2012). (i) The website has been completely revised and (ii) allows now also free text search for kinetics data. (iii) Additional interlinkages with other databases in our field have been established; this enables users to gain directly comprehensive knowledge about the properties of enzymes and kinetics beyond SABIO-RK. (iv) Vice versa, direct access to SABIO-RK data has been implemented in several systems biology tools and workflows. (v) On request of our experimental users, the data can be exported now additionally in spreadsheet formats. (vi) The newly established SABIO-RK Curation Service allows to respond to specific data requirements.
FEBS Journal | 2018
Neil Swainston; Antonio Baici; Barbara M. Bakker; Athel Cornish-Bowden; Paul F. Fitzpatrick; Peter J. Halling; Thomas S. Leyh; Claire O'Donovan; Frank M. Raushel; Udo Reschel; Johann M. Rohwer; Santiago Schnell; Dietmar Schomburg; Keith F. Tipton; Ming Daw Tsai; Hans V. Westerhoff; Ulrike Wittig; Roland Wohlgemuth; Carsten Kettner
Standards for reporting enzymology data (STRENDA) DB is a validation and storage system for enzyme function data that incorporates the STRENDA Guidelines. It provides authors who are preparing a manuscript with a user-friendly, web-based service that checks automatically enzymology data sets entered in the submission form that they are complete and valid before they are submitted as part of a publication to a journal.