Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uma Krishna is active.

Publication


Featured researches published by Uma Krishna.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Helicobacter pylori genetic diversity within the gastric niche of a single human host

Dawn A. Israel; Nina R. Salama; Uma Krishna; Ulrich M. Rieger; John Atherton; Stanley Falkow; Richard M. Peek

Isolates of the gastric pathogen Helicobacter pylori harvested from different individuals are highly polymorphic. Strain variation also has been observed within a single host. To more fully ascertain the extent of H. pylori genetic diversity within the ecological niche of its natural host, we harvested additional isolates of the sequenced H. pylori strain J99 from its human source patient after a 6-year interval. Randomly amplified polymorphic DNA PCR and DNA sequencing of four unlinked loci indicated that these isolates were closely related to the original strain. In contrast, microarray analysis revealed differences in genetic content among all of the isolates that were not detected by randomly amplified polymorphic DNA PCR or sequence analysis. Several ORFs from loci scattered throughout the chromosome in the archival strain did not hybridize with DNA from the recent strains, including multiple ORFs within the J99 plasticity zone. In addition, DNA from the recent isolates hybridized with probes for ORFs specific for the other fully sequenced H. pylori strain 26695, including a putative traG homolog. Among the additional J99 isolates, patterns of genetic diversity were distinct both when compared with each other and to the original prototype isolate. These results indicate that within an apparently homogeneous population, as determined by macroscale comparison and nucleotide sequence analysis, remarkable genetic differences exist among single-colony isolates of H. pylori. Direct evidence that H. pylori has the capacity to lose and possibly acquire exogenous DNA is consistent with a model of continuous microevolution within its cognate host.


The Journal of Infectious Diseases | 2004

Helicobacter pylori Flagellin Evades Toll-Like Receptor 5-Mediated Innate Immunity

Andrew T. Gewirtz; Yimin Yu; Uma Krishna; Dawn A. Israel; Sean Lyons; Richard M. Peek

Helicobacter pylori colonizes the human stomach for decades unless pharmacologically eradicated. We hypothesized that this flagellated pathogen escapes immune clearance, in part, by avoiding detection by the flagellin receptor Toll-like receptor 5 (TLR5). In contrast to other gram-negative microbes, H. pylori did not release flagellin. Furthermore, recombinant H. pylori flagellin (FlaA) was significantly less potent (1000-fold) than Salmonella typhimurium flagellin in activating TLR5-mediated interleukin (IL)-8 secretion. TLR5 can mediate flagellin-induced IL-8 secretion via p38 mitogen-activated protein kinase signaling; however, compared with potent induction by S. typhimurium flagellin, H. pylori FlaA-dependent p38 activation was substantially attenuated. In addition, disruption of H. pylori flaA decreased motility but had no effect on H. pylori-induced IL-8 secretion, which indicates that H. pylori flagellin plays no role in activating epithelial orchestration of inflammation. We conclude that H. pylori evades TLR5-mediated detection, which may contribute to its long-term persistence in individual hosts.


Cancer Research | 2008

Regulation of Gastric Carcinogenesis by Helicobacter pylori Virulence Factors

Aime T. Franco; Elizabeth Johnston; Uma Krishna; Yoshio Yamaoka; Dawn A. Israel; Toni Nagy; Lydia E. Wroblewski; Maria B. Piazuelo; Pelayo Correa; Richard M. Peek

Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, and strains that possess the cag secretion system, which translocates the bacterial effector CagA into host cells, augment cancer risk. H. pylori strains that express the vacuolating cytotoxin or the outer membrane protein OipA are similarly associated with severe pathologic outcomes. We previously reported that an in vivo adapted H. pylori strain, 7.13, induces gastric adenocarcinoma in rodent models of gastritis. In the current study, we used carcinogenic strain 7.13 as a prototype to define the role of virulence constituents in H. pylori-mediated carcinogenesis. Mongolian gerbils were infected with wild-type strain 7.13 or cagA(-), vacA(-), or oipA(-) mutants for 12 to 52 weeks. All infected gerbils developed gastritis; however, inflammation was significantly attenuated in animals infected with the cagA(-) but not the vacA(-) or oipA(-) strains. Gastric dysplasia and cancer developed in >50% of gerbils infected with either the wild-type or vacA(-) strain but in none of the animals infected with the cagA(-) strain. Inactivation of oipA decreased beta-catenin nuclear localization in vitro and reduced the incidence of cancer in gerbils. OipA expression was detected significantly more frequently among H. pylori strains isolated from human subjects with gastric cancer precursor lesions versus persons with gastritis alone. These results indicate that loss of CagA prevents the development of cancer in this model. Inactivation of oipA attenuates beta-catenin nuclear translocation and also decreases the incidence of carcinoma. In addition to defining factors that mediate H. pylori-induced cancer, these results provide insight into mechanisms that may regulate the development of other malignancies arising within the context of inflammatory states.


Gastroenterology | 2003

Host and microbial constituents influence helicobacter pylori-induced cancer in a murine model of hypergastrinemia

James G. Fox; Timothy C. Wang; Arlin B. Rogers; Theofilos Poutahidis; Zhongming Ge; Nancy S. Taylor; Charles A. Dangler; Dawn A. Israel; Uma Krishna; Kristen Gaus; Richard M. Peek

BACKGROUND & AIMS Helicobacter pylori cag(+) strains and high-expression host interleukin 1beta (IL-1beta) polymorphisms augment the risk for intestinal-type gastric adenocarcinoma, a malignancy that predominates in males. We examined the effects of an H. pylori cancer-associated determinant (cagE), IL-1beta, and host gender in a transgenic hypergastrinemic (INS-GAS) murine model of gastric carcinogenesis. METHODS Male and female INS-GAS mice infected with wild-type H. pylori, an H. pylori cagE(-) mutant, or H. felis were killed 2-24 weeks postchallenge. Gastric injury was scored from 0 to 4, and mucosal IL-1beta levels were quantified by ELISA. RESULTS Male INS-GAS mice infected with H. pylori uniformly developed atrophy, intestinal metaplasia, and dysplasia by 6 weeks and carcinoma by 24 weeks. Mucosal IL-1beta concentrations increased 12 weeks following Helicobacter challenge, but levels then decreased by 24 weeks. Inactivation of cagE delayed the progression to carcinoma, but neoplasia ultimately developed in all males infected with the H. pylori mutant. In contrast, none of the H. pylori-infected female mice developed cancer, and injury scores, but not IL-1beta levels, were significantly higher in males compared with females. CONCLUSIONS H. pylori infection induces gastric adenocarcinoma in an experimental mouse model of disease. Cancer is restricted to males and loss of cagE temporally retards but does not abrogate pathologic progression. Mucosal levels of IL-1beta increase prior to the development of gastric cancer but are not related to gender. The INS-GAS model is effective for investigating discrete host-microbial interactions that culminate in gastric cancer within the context of biologic conditions induced by H. pylori.


Gastroenterology | 2003

Helicobacter pylori strain-selective induction of matrix metalloproteinase-7 in vitro and within gastric mucosa

Howard C. Crawford; Uma Krishna; Dawn A. Israel; Lynn M. Matrisian; M. Kay Washington; Richard M. Peek

BACKGROUND AND AIMS Helicobacter pylori strains that possess the cag pathogenicity island (cag(+)) augment the risk for distal gastric cancer. Matrix metalloproteinase (MMP)-7, an epithelial cell-derived MMP that is induced by bacterial contact, is overexpressed within human gastric adenocarcinoma specimens and enhances tumor formation in rodents. We determined whether H. pylori alters MMP-7 expression and investigated the molecular pathways required for these events. METHODS MMP-7 was detected in human gastric mucosa by immunohistochemistry and in H. pylori/AGS gastric epithelial cell coculture supernatants by Western analysis. AGS cells were cocultured with wild-type H. pylori, or isogenic cagA(-), cagE(-), or vacA(-) mutants, in the absence or presence of inhibitors of nuclear factor kappaB activation, p38, or extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase. RESULTS H. pylori cag(+) strains increased MMP-7 expression in AGS cells 5-7-fold, whereas cag(-) isolates had no effect. Inactivation of cagE, but not cagA or vacA, completely attenuated induction of MMP-7, and inhibition of ERK 1/2 decreased MMP-7 production. In vivo, MMP-7 was expressed in gastric epithelial cells in specimens from 80% of cag(+)-colonized persons but in none of the cag(-) or uninfected subjects. CONCLUSIONS H. pylori cag(+) strains enhance levels of MMP-7 within inflamed mucosa. In vitro, cag(+) isolates selectively induce MMP-7, and this is dependent on activation of ERK 1/2 by specific components within the cag island. Differential induction of MMP-7 by H. pylori cag(+) isolates may explain in part the augmentation in gastric cancer risk associated with these strains.


Molecular Biology of the Cell | 2008

p120 and Kaiso Regulate Helicobacter pylori-induced Expression of Matrix Metalloproteinase-7

Seth R. Ogden; Lydia E. Wroblewski; Christiane Weydig; Judith Romero-Gallo; Daniel P. O'Brien; Dawn A. Israel; Uma Krishna; Barbara Fingleton; Albert B. Reynolds; Silja Wessler; Richard M. Peek

Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet only a fraction of infected persons develop cancer. One H. pylori constituent that augments disease risk is the cytotoxin-associated gene (cag) pathogenicity island, which encodes a secretion system that translocates bacterial effector molecules into host cells. Matrix metalloproteinase (MMP)-7, a member of a family of enzymes with tumor-initiating properties, is overexpressed in premalignant and malignant gastric lesions, and H. pylori cag(+) strains selectively increase MMP-7 protein levels in gastric epithelial cells in vitro and in vivo. We now report that H. pylori-mediated mmp-7 induction is transcriptionally regulated via aberrant activation of p120-catenin (p120), a component of adherens junctions. H. pylori increases mmp-7 mRNA levels in a cag- and p120-dependent manner and induces translocation of p120 to the nucleus in vitro and in a novel ex vivo gastric gland culture system. Nuclear translocation of p120 in response to H. pylori relieves Kaiso-mediated transcriptional repression of mmp-7, which is implicated in tumorigenesis. These results indicate that selective and coordinated induction of mmp-7 expression by H. pylori cag(+) isolates may explain in part the augmentation in gastric cancer risk associated with these strains.


Laboratory Investigation | 2008

Effect of Helicobacter pylori eradication on gastric carcinogenesis

Judith Romero-Gallo; Elizabeth J. Harris; Uma Krishna; Mary Kay Washington; Guillermo I. Perez-Perez; Richard M. Peek

Chronic gastritis induced by Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet the effects of bacterial eradication on carcinogenesis remain unclear. Animal models provide important insights into factors that are involved in gastric carcinogenesis, and we previously utilized such a model to demonstrate that an in vivo-adapted H. pylori strain, 7.13, rapidly and reproducibly induces inflammation-mediated gastric carcinoma. In the current study, we used this bacterial strain as a prototype to define the role of targeted antimicrobial therapy in gastric carcinogenesis. Mongolian gerbils were infected with H. pylori for 4 or 8 weeks, treated with antimicrobial agents or vehicle, and then euthanized at 8 weeks after the completion of therapy. All infected gerbils developed gastritis; however, inflammation was significantly attenuated in animals receiving antimicrobial therapy. Gastric dysplasia or cancer developed in >60% of the gerbils that remained persistently colonized with H. pylori, but in none of the animals treated with antibiotics following 4 weeks of infection. Infection with H. pylori for 8 weeks prior to therapy resulted in an attenuation, but not complete prevention, of pre-malignant and malignant lesions. Similarly, antibiotic therapy initiated at 4, but not 8, weeks after H. pylori challenge significantly reduced expression of the Th1 pro-inflammatory cytokine interferon-γ within colonized gastric mucosa. These results indicate that treatment of H. pylori in this model decreases the incidence and severity of lesions with carcinogenic potential. The effectiveness of eradication is dependent upon the timing of intervention, providing insights into mechanisms that may regulate the development of malignancies arising within the context of inflammatory states.


Clinical and Vaccine Immunology | 2002

Host Cell Responses to Genotypically Similar Helicobacter pylori Isolates from United States and Japan

Takafumi Ando; Richard M. Peek; Yong Chan Lee; Uma Krishna; Kazuo Kusugami; Martin J. Blaser

ABSTRACT Associations of Helicobacter pylori genotypes with disease differ between Western countries and Asia. Therefore, we directly compared histopathological and in vitro responses to clinical isolates with similar genotypes. Sixty-three cagA+vacAs1/m1 H. pylori isolates (United States, n = 24; Japan, n = 39) and eight cagA-negative vacAs2/m2 strains were incubated with AGS cells, and supernatants were assayed for interleukin-8 (IL-8) and for DNA fragmentation. CagA tyrosine phosphorylation in AGS cells and the sequence of the putative HP0638 (oipA) signal sequence region were determined for 22 representative strains. HP0638 and/or cag island mutant strains were created and examined in IL-8 and CagA tyrosine phosphorylation assays. Levels of IL-8 induction and DNA fragmentation were similar in the U.S. and Japanese cagA+vacAs1/m1 isolates. All 10 of the isolates with the highest IL-8 induction and 8 of the 10 isolates with the lowest IL-8 induction had an in-frame oipA open reading frame, and all 10 of the isolates with the highest IL-8 induction and 7 of the 10 isolates with the lowest IL-8 induction induced CagA tyrosine phosphorylation in AGS cells. Eight isolates from gastric ulcer patients induced significantly more apoptosis in vitro, and more severe gastritis and atrophy in vivo, than other Japanese isolates. Disruption of HP0638 did not affect IL-8 induction or CagA tyrosine phosphorylation. Thus, H. pylori cagA+vacAs1/m1 isolates from the United States and Japan induce similar IL-8 and apoptosis levels. Inactivation of HP0638 does not alter epithelial responses mediated by the cag island in vitro. Assessment of apoptosis in vitro identified a group of H. pylori isolates that induce more severe gastric inflammation and atrophy.


Molecular & Cellular Proteomics | 2009

Delineation of a Carcinogenic Helicobacter pylori Proteome

Aime T. Franco; David B. Friedman; Toni Nagy; Judith Romero-Gallo; Uma Krishna; Amy Kendall; Dawn A. Israel; Nicole Tegtmeyer; Mary Kay Washington; Richard M. Peek

Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet only a fraction of infected persons ever develop cancer. The extensive genetic diversity inherent to this pathogen has precluded comprehensive analyses of constituents that mediate carcinogenesis. We previously reported that in vivo adaptation of a non-carcinogenic H. pylori strain endowed the output derivative with the ability to induce adenocarcinoma, providing a unique opportunity to identify proteins selectively expressed by an oncogenic H. pylori strain. Using a global proteomics DIGE/MS approach, a novel missense mutation of the flagellar protein FlaA was identified that affects structure and function of this virulence-related organelle. Among 25 additional differentially abundant proteins, this approach also identified new proteins previously unassociated with gastric cancer, generating a profile of H. pylori proteins to use in vaccine development and for screening persons infected with strains most likely to induce severe disease.


Journal of Biological Chemistry | 2006

The role of decay-accelerating factor as a receptor for Helicobacter pylori and a mediator of gastric inflammation.

Daniel P. O'Brien; Dawn A. Israel; Uma Krishna; Judith Romero-Gallo; John G. Nedrud; M. Edward Medof; Feng Lin; Raymond W. Redline; Douglas M. Lublin; Bogdan Nowicki; Aime T. Franco; Seth R. Ogden; Amanda D. Williams; D. Brent Polk; Richard M. Peek

Persistent gastritis induced by Helicobacter pylori is the strongest known risk factor for peptic ulcer disease and distal gastric adenocarcinoma, a process for which adherence of H. pylori to gastric epithelial cells is critical. Decay-accelerating factor (DAF), a protein that protects epithelial cells from complement-mediated lysis, also functions as a receptor for several microbial pathogens. In this study, we investigated whether H. pylori utilizes DAF as a receptor and the role of DAF within H. pylori-infected gastric mucosa. In vitro studies showed that H. pylori adhered avidly to Chinese hamster ovary cells expressing human DAF but not to vector controls. In H. pylori, disruption of the virulence factors vacA, cagA, and cagE did not alter adherence, but deletion of DAF complement control protein (CCP) domains 1-4 or the heavily O-glycosylated serine-threonine-rich COOH-terminal domain reduced binding. In cultured gastric epithelial cells, H. pylori induced transcriptional up-regulation of DAF, and genetic deficiency of DAF attenuated the development of inflammation among H. pylori-infected mice. These results indicate that DAF may regulate H. pylori-epithelial cell interactions relevant to pathogenesis.

Collaboration


Dive into the Uma Krishna's collaboration.

Top Co-Authors

Avatar

Richard M. Peek

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Judith Romero-Gallo

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Blanca Piazuelo

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith T. Wilson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Giovanni Suarez

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Pelayo Correa

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alberto G. Delgado

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aime T. Franco

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Barbara G. Schneider

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge