Uma Raju
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uma Raju.
Proteomics | 2008
Ira Skvortsova; Sergej Skvortsov; Taras Stasyk; Uma Raju; Bela Andre Popper; Bernhard Schiestl; Elisabeth von Guggenberg; Andreas Neher; Guenther K. Bonn; Lukas A. Huber; Peter Lukas
Radiation therapy plays an important role in the management of prostate carcinoma. However, the problem of radioresistance and molecular mechanisms by which prostate carcinoma cells overcome cytotoxic effects of radiation therapy remains to be elucidated. In order to investigate possible intracellular mechanisms underlying the prostate carcinoma recurrences after radiotherapy, we have established three radiation‐resistant prostate cancer cell lines, LNCaP‐IRR, PC3‐IRR, and Du145‐IRR derived from the parental LNCaP, PC3, and Du145 prostate cancer cells by repetitive exposure to ionizing radiation. LNCaP‐IRR, PC3‐IRR, and Du145‐IRR cells (prostate carcinoma cells recurred after radiation exposure (IRR cells)) showed higher radioresistance and cell motility than parental cell lines. IRR cells exhibited higher levels of androgen and epidermal growth factor (EGF) receptors and activation of their downstream pathways, such as Ras‐mitogen‐activated protein kinase (MAPK) and phosphatidyl inositol 3‐kinase (PI3K)‐Akt and Jak‐STAT. In order to define additional mechanisms involved in the radioresistance development, we determined differences in the proteome profile of parental and IRR cells using 2‐D DIGE followed by computational image analysis and MS. Twenty‐seven proteins were found to be modulated in all three radioresistant cell lines compared to parental cells. Identified proteins revealed capacity to interact with EGF and androgen receptors related signal transduction pathways and were involved in the regulation of intracellular routs providing cell survival, increased motility, mutagenesis, and DNA repair. Our data suggest that radioresistance development is accompanied by multiple mechanisms, including activation of cell receptors and related downstream signal transduction pathways. Identified proteins regulated in the radioresistant prostate carcinoma cells can significantly intensify activation of intracellular signaling that govern cell survival, growth, proliferation, invasion, motility, and DNA repair. In addition, such analyses may be utilized in predicting cellular response to radiotherapy.
Clinical Cancer Research | 2006
Smith Apisarnthanarax; Mian M. Alauddin; Firas Mourtada; Hisanori Ariga; Uma Raju; Osama Mawlawi; Dongmei Han; William G. Bornmann; Jaffer A. Ajani; Luka Milas; Juri G. Gelovani; K.S.Clifford Chao
Purpose: Early identification of esophageal cancer patients who are responding or resistant to combined chemoradiotherapy may lead to individualized therapeutic approaches and improved clinical outcomes. We assessed the ability of 3′-deoxy-3′-18F-fluorothymidine positron emission tomography (FLT-PET) to detect early changes in tumor proliferation after chemoradiotherapy in experimental models of esophageal carcinoma. Experimental Design: The in vitro and ex vivo tumor uptake of [3H]FLT in SEG-1 human esophageal adenocarcinoma cells were studied at various early time points after docetaxel plus irradiation and validated with conventional assessments of cellular proliferation [thymidine (Thd) and Ki-67] and [18F]FLT micro-PET imaging. Imaging-histologic correlation was determined by comparing spatial Ki-67 and [18F]FLT distribution in autoradiographs. Comparison with fluorodeoxyglucose (FDG) was done in all experiments. Results:In vitro [3H]FLT and [3H]Thd uptake rapidly decreased in SEG-1 cells 24 hours after docetaxel with a maximal reduction of over 5-fold (P = 0.005). The [3H]FLT tumor-to-muscle uptake ratio in xenografts declined by 75% compared with baseline (P < 0.005) by 2 days after chemoradiotherapy, despite the lack of change in tumor size. In contrast, the decline of [3H]FDG uptake was gradual and less pronounced. Tumor uptake of [3H]FLT was more closely correlated with Ki-67 expression (r = 0.89, P < 0.001) than was [3H]FDG (r = 0.39, P = 0.08). Micro-PET images depicted similar trends in reduction of [18F]FLT and [18F]FDG tumor uptake. Autoradiographs displayed spatial correlations between [18F]FLT uptake and histologic Ki-67 distribution in preliminary studies. Conclusions: FLT-PET is suitable and more specific than FDG-PET for depicting early reductions in tumor proliferation that precede tumor size changes after chemoradiotherapy.
Clinical Cancer Research | 2011
Benjamin J. Moeller; John S. Yordy; Michelle D. Williams; Uma Giri; Uma Raju; David P. Molkentine; Lauren Averett Byers; John V. Heymach; Michael D. Story; J. Jack Lee; Erich M. Sturgis; Randal S. Weber; Adam S. Garden; K.K. Ang; David L. Schwartz
Purpose: Radiotherapy plays an integral role in the treatment of head and neck squamous cell carcinoma (HNSCC). Although proteins involved in DNA repair may predict HNSCC response to radiotherapy, none has been validated in this context. We examined whether differential expression of double-strand DNA break (DSB) repair proteins in HNSCC, the chief mediators of DNA repair following irradiation, predict for treatment outcomes. Experimental Design: Archival HNSCC tumor specimens (n = 89) were assembled onto a tissue microarray and stained with antibodies raised against 38 biomarkers. The biomarker set was enriched for proteins involved in DSB repair, in addition to established mechanistic markers of radioresistance. Staining was correlated with treatment response and survival alongside established clinical and pathologic covariates. Results were validated in an independent intramural cohort (n = 34). Results: Ku80, a key mediator of DSB repair, correlated most closely with clinical outcomes. Ku80 was overexpressed in half of all tumors, and its expression was independent of all other covariates examined. Ku80 overexpression was an independent predictor for both locoregional failure and mortality following radiotherapy (P < 0.01). The predictive power of Ku80 overexpression was confined largely to HPV-negative HNSCC, where it conferred a nine-fold greater risk of death at two years. Conclusions: Ku80 overexpression is a common feature of HNSCC, and is a candidate DNA repair-related biomarker for radiation treatment failure and death, particularly in patients with high-risk HPV-negative disease. It is a promising, mechanistically rational biomarker to select individual HPV-negative HNSCC patients for strategies to intensify treatment. Clin Cancer Res; 17(7); 2035–43. ©2011 AACR.
Radiotherapy and Oncology | 2010
Ira Skvortsova; Sergej Skvortsov; Uma Raju; Taras Stasyk; Oliver Riesterer; Eva Maria Schottdorf; Bela Andre Popper; Bernhard Schiestl; Paul Eichberger; Paul Debbage; Andreas Neher; Guenther K. Bonn; Lukas A. Huber; Luka Milas; Peter Lukas
PURPOSE Radiation therapy cures malignant tumors of the head and neck region more effectively when it is combined with application of the anti-EGFR monoclonal antibody cetuximab. Despite the successes achieved, we still do not know how to select patients who will respond to this combination of anti-EGFR monoclonal antibody and radiation. This study was conducted to elucidate possible mechanisms which cause the combined treatment with cetuximab and irradiation to fail in some cases of squamous cell carcinomas. METHODS AND MATERIALS Mice bearing FaDu and A431 squamous cell carcinoma xenograft tumors were treated with cetuximab (total dose 3 mg, intraperitoneally), irradiation (10 Gy) or their combination at the same doses. Treatment was applied when tumors reached 8mm in size. To collect samples for further protein analysis (two-dimensional differential gel electrophoresis (2-D DIGE), mass spectrometry MALDI-TOF/TOF, Western blot analysis, and ELISA), mice from each group were sacrificed on the 8th day after the first injection of cetuximab. Other mice were subjected to tumor growth delay assay. RESULTS In FaDu xenografts, treatment with cetuximab alone was nearly as effective as cetuximab combined with ionizing radiation, whereas A431 tumors responded to the combined treatment with significantly enhanced delay in tumor growth. Tumors extracted from the untreated FaDu and A431 xenografts were analysed for protein expression, and 34 proteins that were differently expressed in the two tumor types were identified. The majority of these proteins are closely related to intratumoral angiogenesis, cell adhesion, motility, differentiation, epithelial-to-mesenchymal transition (EMT), c-myc signaling and DNA repair. CONCLUSIONS The failure of cetuximab to enhance radiation response in FaDu xenografts was associated with the initiation of the program of EMT and with c-myc up-regulation in the carcinoma cells. For this reason, c-myc and EMT-related proteins (E-cadherin, vimentin) may be considered as potential biomarkers to predict squamous cell carcinoma response after treatment with cetuximab in combination with radiation.
Radiotherapy and Oncology | 2012
Uma Raju; Oliver Riesterer; Zhi Qiang Wang; David P. Molkentine; Jessica M. Molkentine; Faye M. Johnson; Bonnie S. Glisson; Luka Milas; K. Kian Ang
BACKGROUND AND PURPOSE Although inhibition of epidermal growth factor receptor (EGFR) signaling during radiation led to improvement of tumor control and survival, novel strategies are needed to further improve the outcome of patients with locally advanced head and neck carcinoma. Because EGFR is known to interact with c-Src kinases, the present study investigated dasatinib (BMS-354825), an inhibitor of c-Src kinases, for its efficacy in enhancing radiosensitivity of human head and neck squamous cell carcinomas (HNSCC) in vitro and examined the underlying mechanisms for this effect. MATERIALS AND METHODS Six HNSCC lines were exposed to dasatinib, radiation, or both, and assessed for c-Src and EGFR expression, cell survival and colony forming ability. Among these cell lines, HN-5 and FaDu lines were analyzed for induction of apoptosis, cell cycle re-distribution and for nuclear localization of EGFR, γ-H2AX and 53BP1 proteins. Immuno-precipitation and Western blots were performed to analyze the levels and binding of proteins involved in cell survival, apoptosis and DNA repair pathways. Suppression of c-Src by siRNA and subsequent clonogenic assay was performed in HN-5 cells. RESULTS All six HNSCC lines that were examined expressed high levels of c-Src. Two (HN-5 and MDA-183) expressed higher levels of EGFR than other lines. Dasatinib suppressed cell survival of all cell lines tested independent of c-Src or EGFR levels but enhanced the radiosensitivity of HN-5 and MDA-183. HN-5 and FaDu were analyzed further. Dasatinib suppressed phosphorylation of c-Src in both cell lines, but decreased repair of radiation-induced DNA damage in HN-5 cells only as evidenced by suppression of c-Abl and Nbs-1 activity, inhibition of the association between c-Src and EGFR or Her-2, prolongation of nuclear γ-H2AX and 53BP1 foci and inhibition of EGFR nuclear localization and its association with DNA-PKcs. Finally, partial suppression of c-Src resulted in a small increase in HN-5 cell radiosensitivity. CONCLUSIONS Our data demonstrate that dasatinib induces apoptosis and blocks DNA repair in EGFR-expressing HNSCC cells and improves radiotherapy outcome. These findings warrant further investigation using in vivo tumor models for potential translation into clinical testing.
Investigational New Drugs | 2011
Oliver Riesterer; Fumihiko Matsumoto; Li Wang; Jessica Pickett; David P. Molkentine; Uma Giri; Luka Milas; Uma Raju
SummaryCheck point kinases (Chk) play a major role in facilitating DNA repair upon radiation exposure. We tested the potency of a novel inhibitor of Chk1 and Chk2, XL-844 (provided by Exelixis Inc., CA, USA), to radiosensitize human cancer cells grown in culture and investigated the underlying mechanisms. HT-29 cells (a human colon cancer line) were exposed to XL-844, radiation, or both, and assessed for clonogenic cell survival. Treatment-dependent effects on phosphorylated forms of Chk proteins were assessed by Western blots. Further mechanistic investigations in HT-29 cells included cell cycle analysis by flowcytometry and assessment of DNA repair kinetics by immuno-cytochemistry (ICC) for nuclear appearance of the phosphorylated form of histone 2AX protein (γ-H2AX) staining. Cells undergoing mitotic catastrophe were identified by irregular pattern of mitotic spindle markers α and γ-tubulin staining by ICC. XL-844 enhanced radiosensitivity in a dose and schedule-dependent manner and the enhancement factor was 1.42 at 0.5 survival fraction. Mechanistically XL-844 abrogated radiation-induced Chk2 phosphorylation, induced pan-nuclear γ-H2AX, and prolonged the presence of radiation-induced γ-H2AX foci, and promoted mitotic catastrophe. In conclusion, our data showed that inhibition of Chk2 activity by XL-844 enhanced cancer cell radiosensitivity that was associated with inhibition of DNA repair and induction of mitotic catastrophe.
Cancer Letters | 2002
Sachiko Nasu; Luka Milas; Shinichiro Kawabe; Uma Raju; Robert A. Newman
Cardiac glycosides such as digitoxin and ouabain have previously been shown to be selectively cytotoxic to tumor as opposed to normal cells. Moreover, this class of agents has also been shown to act as potent radiosensitizers. In the present study we explored the relative radiosensitization potential of oleandrin, a cardiac glycoside contained within the plant extract known as Anvirzel that recently underwent a Phase I trial as a novel drug for anticancer therapy. The data show that oleandrin produces an enhancement of sensitivity of PC-3 human prostate cells to radiation; at a cell survival of 0.1, the enhancement factor was 1.32. The magnitude of radiosensitization depended on duration of exposure of cells to drug prior to radiation treatment. While a radiosensitizing effect of oleandrin was evident with only 1h of cell exposure to drug, the effect greatly increased with 24h oleandrin pretreatment. Susceptibility of PC-3 cells to oleandrin and radiation-induced apoptosis was dependent on activation of caspase-3. Activation was greatest when cells were exposed simultaneously to oleandrin and radiation. Inhibition of caspase-3 activation with Z-DEVD-FMK abrogated the oleandrin-induced enhancement of radiation response suggesting that both oleandrin and radiation share a caspase-3 dependent mechanism of apoptosis in the PC-3 cell line.
International Journal of Radiation Oncology Biology Physics | 2011
Oliver Riesterer; Qiuan Yang; Uma Raju; Mylin Torres; David P. Molkentine; Nalini Patel; David Valdecanas; Luka Milas; K. Kian Ang
PURPOSE The IGF1/IGF-1R signaling pathway has emerged as a potential determinant of radiation resistance in human cancer cell lines. Therefore we investigated the potency of monoclonal anti-IGF-1R antibody, A12, to enhance radiation response in upper respiratory tract cancers. METHODS AND MATERIALS Cell lines were assessed for IGF-1R expression and IGF1-dependent response to A12 or radiation using viability and clonogenic cancer cell survival assays. In vivo response of tumor xenografts to 10 or 20 Gy and A12 (0.25-2 mg × 3) was assessed using growth delay assays. Combined treatment effects were also analyzed by immunohistochemical assays for tumor cell proliferation, apoptosis, necrosis, and vascular endothelial growth factor expression at Days 1 and 6 after start of treatment. RESULTS A12 enhanced the radiosensitivity of HN5 and FaDu head-and-neck carcinomas in vitro (p < 0.05) and amplified the radioresponse of FaDu xenografts in a dose-dependent manner, with enhancement factors ranging from 1.2 to 1.8 (p < 0.01). Immunohistochemical analysis of FaDu xenografts demonstrated that A12 inhibited tumor cell proliferation (p < 0.05) and vascular endothelial growth factor expression. When A12 was combined with radiation, this resulted in apoptosis induction that persisted until 6 days from the start of treatment and in increased necrosis at Day 1 (p < 0.01, respectively). Combined treatment with A12 and radiation resulted in additive or subadditive growth delay in H460 or A549 xenografts, respectively. CONCLUSIONS The results of this study strengthen the evidence for investigating how anti-IGF-1R strategies can be integrated into radiation and radiation-cetuximab regimen in the treatment of cancer of the upper aerodigestive tract cancers.
Journal of Thoracic Oncology | 2012
Vikas Bhardwaj; Yanai Zhan; Maria Angelica Abdalla Cortez; K. Kian Ang; David P. Molkentine; Anupama Munshi; Uma Raju; Ritsuko Komaki; John V. Heymach; James W. Welsh
Introduction: The radiation doses used to treat unresectable lung cancer are often limited by the proximity of normal tissues. Overexpression of c-Met, a receptor tyrosine kinase, occurs in about half of non–small-cell lung cancers (NSCLCs) and has been associated with resistance to radiation therapy and poor patient survival. We hypothesized that inhibiting c-Met would increase the sensitivity of NSCLC cells to radiation, enhancing the therapeutic ratio, which may potentially translate into improved local control. Methods: We tested the radiosensitivity of two high-c-Met–expressing NSCLC lines, EBC-1 and H1993, and two low-c-Met–expressing lines, A549 and H460, with and without the small-molecule c-Met inhibitor MK-8033. Proliferation and protein expression were measured with clonogenic survival assays and Western blotting, respectively. &ggr;-H2AX levels were evaluated by immunofluorescence staining. Results: MK-8033 radiosensitized the high-c-Met–expressing EBC-1 and H1993 cells but not the low-c-Met–expressing cell lines A549 and H460. However, irradiation of A549 and H460 cells increased the expression of c-Met protein at 30 minutes after the irradiation. Subsequent targeting of this up-regulated c-Met by using MK-8033 followed by a second radiation dose reduced the clonogenic survival of both A549 and H460 cells. MK-8033 reduced the levels of radiation-induced phosphorylated (activated) c-Met in A549 cells. Conclusions: These results suggest that inhibition of c-Met could be an effective strategy to radiosensitize NSCLC tumors with high basal c-Met expression or tumors that acquired resistance to radiation because of up-regulation of c-Met.
Clinical Cancer Research | 2007
Urs von Holzen; Abujiang Pataer; Uma Raju; Dora Bocangel; Stephan A. Vorburger; Yanna Liu; Xiaolin Lu; Jack A. Roth; Bharat B. Aggarwal; Glen N. Barber; Khandan Keyomarsi; Kelly K. Hunt; Stephen G. Swisher
Purpose: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2α (eIF-2α). There have been no reports to date about the role of PKR in radiation sensitivity. Experimental Design: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-κB (NF-κB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. Results: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase–mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR−/− MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-κB and Akt because both NF-κB and Akt are activated after ionizing radiation in PKR+/+ but not PKR−/− cells. Conclusions: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-κB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.