Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uma S. Sajjan is active.

Publication


Featured researches published by Uma S. Sajjan.


Journal of Biological Chemistry | 2005

Phosphatidylinositol 3-Kinase Is Required for Rhinovirus-induced Airway Epithelial Cell Interleukin-8 Expression

Dawn C. Newcomb; Uma S. Sajjan; Suparna Nanua; Yue Jia; Adam M. Goldsmith; J. Kelley Bentley; Marc B. Hershenson

Rhinovirus (RV) is a common cause of asthma exacerbations. The signaling mechanisms regulating RV-induced airway epithelial cell responses have not been well studied. We examined the role of phosphatidylinositol (PI) 3-kinase in RV-induced interleukin (IL)-8 expression. Infection of 16HBE14o- human bronchial epithelial cells with RV39 induced rapid activation of PI 3-kinase and phosphorylation of Akt, a downstream effector of PI 3-kinase. RV39 also colocalized with cit-Akt-PH, a citrogen-tagged fluorescent fusion protein encoding the pleckstrin homology domain of Akt, indicating that 3-phosphorylated PI accumulates at the site of RV infection. Inhibition of PI 3-kinase and Akt attenuated RV39-induced NF-κB transactivation and IL-8 expression. Inhibition of PI 3-kinase also blocked internalization of labeled RV39 into 16HBE14o- cells, suggesting that the requirement of PI 3-kinase for RV39-induced IL-8 expression, at least in part, relates to its role in viral endocytosis.


The Journal of Infectious Diseases | 2010

Efficacy of Bacteriophage Therapy in a Model of Burkholderia cenocepacia Pulmonary Infection

Lisa A. Carmody; Jason J. Gill; Elizabeth J. Summer; Uma S. Sajjan; Carlos F. Gonzalez; Ryland Young; John J. LiPuma

The therapeutic potential of bacteriophages (phages) in a mouse model of acute Burkholderia cenocepacia pulmonary infection was assessed. Phage treatment was administered by either intranasal inhalation or intraperitoneal injection. Bacterial density, macrophage inflammatory protein 2 (MIP-2), and tumor necrosis factor alpha (TNF-alpha) levels were significantly reduced in lungs of mice treated with intraperitoneal phages (P < .05). No significant differences in lung bacterial density or MIP-2 levels were found between untreated mice and mice treated with intranasal phages, intraperitoneal ultraviolet-inactivated phages, or intraperitoneal lambda phage control mice. Mock-infected mice treated with phage showed no significant increase in lung MIP-2 or TNF-alpha levels compared with mock-infected/mock-treated mice. We have demonstrated the efficacy of phage therapy in an acute B. cenocepacia lung infection model. Systemic phage administration was more effective than inhalational administration, suggesting that circulating phages have better access to bacteria in lungs than do topical phages.


Tissue barriers | 2013

Barrier function of airway tract epithelium

Shyamala Ganesan; Adam T. Comstock; Uma S. Sajjan

Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases.


The Journal of Allergy and Clinical Immunology | 2014

Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells.

Jun Young Hong; J. Kelley Bentley; Yutein Chung; Jing Lei; Jessica Steenrod; Qiang Chen; Uma S. Sajjan; Marc B. Hershenson

BACKGROUND Early-life human rhinovirus infection has been linked to asthma development in high-risk infants and children. Nevertheless, the role of rhinovirus infection in the initiation of asthma remains unclear. OBJECTIVE We hypothesized that, in contrast to infection of mature BALB/c mice, neonatal infection with rhinovirus promotes an IL-25-driven type 2 response, which causes persistent mucous metaplasia and airways hyperresponsiveness. METHODS Six-day-old and 8-week-old BALB/c mice were inoculated with sham HeLa cell lysate or rhinovirus. Airway responses from 1 to 28 days after infection were assessed by using quantitative PCR, ELISA, histology, immunofluorescence microscopy, flow cytometry, and methacholine responsiveness. Selected mice were treated with a neutralizing antibody to IL-25. RESULTS Compared with mature mice, rhinovirus infection in neonatal mice increased lung IL-13 and IL-25 production, whereas IFN-γ, IL-12p40, and TNF-α expression was suppressed. In addition, the population of IL-13-secreting type 2 innate lymphoid cells (ILC2s) was expanded with rhinovirus infection in neonatal but not mature mice. ILC2s were the major cell type secreting IL-13 in neonates. Finally, anti-IL-25 neutralizing antibody attenuated ILC2 expansion, mucous hypersecretion, and airways responsiveness. CONCLUSIONS These findings suggest that early-life viral infection could contribute to asthma development by provoking age-dependent, IL-25-driven type 2 immune responses.


American Journal of Pathology | 2011

Resident Tissue-Specific Mesenchymal Progenitor Cells Contribute to Fibrogenesis in Human Lung Allografts

Natalie Walker; Linda Badri; Scott H. Wettlaufer; Andrew Flint; Uma S. Sajjan; Paul H. Krebsbach; Venkateshwar G. Keshamouni; Marc Peters-Golden; Vibha N. Lama

Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs.


Journal of Immunology | 2009

CXCR2 Is Required for Neutrophilic Airway Inflammation and Hyperresponsiveness in a Mouse Model of Human Rhinovirus Infection

Deepti R. Nagarkar; Qiong Wang; Jee Shim; Ying Zhao; Wan C. Tsai; Nicholas W. Lukacs; Uma S. Sajjan; Marc B. Hershenson

Human rhinovirus (RV) infection is responsible for the majority of virus-induced asthma exacerbations. Using a mouse model of human RV infection, we sought to determine the requirement of CXCR2, the receptor for ELR-positive CXC chemokines, for RV-induced airway neutrophilia and hyperresponsiveness. Wild-type and CXCR2−/− mice were inoculated intranasally with RV1B or sham HeLa cell supernatant. Following RV1B infection, CXCR2−/− mice showed reduced airway and lung neutrophils and cholinergic responsiveness compared with wild-type mice. Similar results were obtained in mice treated with neutralizing Ab to Ly6G, a neutrophil-depleting Ab. Lungs from RV-infected, CXCR2−/− mice showed significantly reduced production of TNF-α, MIP-2/CXCL2, and KC/CXCL1 and lower expression of MUC5B compared with RV-treated wild-type mice. The requirement of TNF-α for RV1B-induced airway responses was tested using TNFR1−/− mice. TNFR1−/− animals displayed reduced airway responsiveness to RV1B, even when exogenous MIP-2 was added to the airways. We conclude that CXCR2 is required for RV-induced neutrophilic airway inflammation and that neutrophil TNF-α release is required for airway hyperresponsiveness.


Molecular Biology of the Cell | 2011

Induction of Ran GTP drives ciliogenesis

Shuling Fan; Eileen L. Whiteman; Toby W. Hurd; Jeremy C. McIntyre; John E. Dishinger; Chia Jen Liu; Jeffrey R. Martens; Kristen J. Verhey; Uma S. Sajjan; Ben Margolis

Recent work suggests an important role for the Ran importin system in cilia trafficking. At the onset of ciliogenesis, Ran GTP levels rise markedly at the centrosome. Altering Ran GTP levels by varying RanBP1 expression modulates cilia formation and trafficking.


Respiratory Research | 2010

Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression

Shyamala Ganesan; Andrea N. Faris; Adam T. Comstock; Sangbrita Chattoraj; Asamanja Chattoraj; John Burgess; Jeffrey L. Curtis; Fernando J. Martinez; Suzanna M. Zick; Marc B. Hershenson; Uma S. Sajjan

BackgroundChronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema.MethodsMice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages.ResultsQuercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype.ConclusionsQuercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.


Journal of Virology | 2007

Rhinovirus Activates Interleukin-8 Expression via a Src/p110β Phosphatidylinositol 3-Kinase/Akt Pathway in Human Airway Epithelial Cells

J. Kelley Bentley; Dawn C. Newcomb; Adam M. Goldsmith; Yue Jia; Uma S. Sajjan; Marc B. Hershenson

ABSTRACT Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o− human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85α PI 3-kinase, p110β PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P3. The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o− and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110β PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110β PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.


Journal of Immunology | 2012

Neonatal Rhinovirus Infection Induces Mucous Metaplasia and Airways Hyperresponsiveness

Dina Schneider; Jun Y. Hong; Antonia P. Popova; Emily R. Bowman; Marisa J. Linn; Alan M. McLean; Ying Zhao; Joanne Sonstein; J. Kelley Bentley; Jason B. Weinberg; Nicholas W. Lukacs; Jeffrey L. Curtis; Uma S. Sajjan; Marc B. Hershenson

Recent studies link early rhinovirus (RV) infections to later asthma development. We hypothesized that neonatal RV infection leads to an IL-13–driven asthma-like phenotype in mice. BALB/c mice were inoculated with RV1B or sham on day 7 of life. Viral RNA persisted in the neonatal lung up to 7 d postinfection. Within this time frame, IFN-α, -β, and -γ peaked 1 d postinfection, whereas IFN-λ levels persisted. Next, we examined mice on day 35 of life, 28 d after initial infection. Compared with sham-treated controls, virus-inoculated mice demonstrated airways hyperresponsiveness. Lungs from RV-infected mice showed increases in several immune cell populations, as well as the percentages of CD4-positive T cells expressing IFN-γ and of NKp46/CD335+, TCR-β+ cells expressing IL-13. Periodic acid-Schiff and immunohistochemical staining revealed mucous cell metaplasia and muc5AC expression in RV1B- but not sham-inoculated lungs. Mucous metaplasia was accompanied by induction of gob-5, MUC5AC, MUC5B, and IL-13 mRNA. By comparison, adult mice infected with RV1B showed no change in IL-13 expression, mucus production, or airways responsiveness 28 d postinfection. Intraperitoneal administration of anti–IL-13 neutralizing Ab attenuated RV-induced mucous metaplasia and methacholine responses, and IL-4R null mice failed to show RV-induced mucous metaplasia. Finally, neonatal RV increased the inflammatory response to subsequent allergic sensitization and challenge. We conclude that neonatal RV1B infection leads to persistent airways inflammation, mucous metaplasia, and hyperresponsiveness, which are mediated, at least in part, by IL-13.

Collaboration


Dive into the Uma S. Sajjan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge