Umberto Agrimi
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Umberto Agrimi.
Veterinary Research | 2009
G. Vaccari; Cynthia H. Panagiotidis; Cristina Acín; Simone Peletto; F. Barillet; Pier Luigi Acutis; Alex Bossers; Jan Langeveld; L.J.M. van Keulen; Theodoros Sklaviadis; Juan José Badiola; Olivier Andreoletti; Martin H. Groschup; Umberto Agrimi; James Foster; Wilfred Goldmann
Scrapie is a fatal, neurodegenerative disease of sheep and goats. It is also the earliest known member in the family of diseases classified as transmissible spongiform encephalopathies (TSE) or prion diseases, which includes Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE), and chronic wasting disease in cervids. The recent revelation of naturally occurring BSE in a goat has brought the issue of TSE in goats to the attention of the public. In contrast to scrapie, BSE presents a proven risk to humans. The risk of goat BSE, however, is difficult to evaluate, as our knowledge of TSE in goats is limited. Natural caprine scrapie has been discovered throughout Europe, with reported cases generally being greatest in countries with the highest goat populations. As with sheep scrapie, susceptibility and incubation period duration of goat scrapie are most likely controlled by the prion protein (PrP) gene (PRNP). Like the PRNP of sheep, the caprine PRNP shows significantly greater variability than that of cattle and humans. Although PRNP variability in goats differs from that observed in sheep, the two species share several identical alleles. Moreover, while the ARR allele associated with enhancing resistance in sheep is not present in the goat PRNP, there is evidence for the existence of other PrP variants related to resistance. This review presents the current knowledge of the epidemiology of caprine scrapie within the major European goat populations, and compiles the current data on genetic variability of PRNP.
Veterinary Microbiology | 2001
Stefano Morabito; Giacomo Dell'Omo; Umberto Agrimi; Herbert Schmidt; Helge Karch; Thomas Cheasty; Alfredo Caprioli
Escherichia coli strains producing a variant of Shiga toxin 2 (Stx2), designated Stx2f, have been recently described in the stools of feral pigeons. During 1997-1998, 649 pigeons were trapped and examined in three different squares of Rome. Stool samples were collected from each bird and enrichment cultures were examined for the presence of Stx by the vero cell assay. Stx-producing E. coli (STEC) were isolated from the positive cultures and characterized by serotyping and PCR analysis of stx and other virulence-related genes. Stx was detected in 10.8% of the stool enrichment cultures. The percentage of positive birds did not differ significantly for the three flocks considered and the season of sample collection. Conversely, STEC carriage was significantly more frequent in young than in adult birds (17.9 versus 8.2%). None of the birds examined showed signs of disease. STEC strains were isolated from 30 of 42 Stx-positive cultures examined. All the strains produced Stx2f, and most of them possessed genes encoding for intimin and the cytolethal distending toxin (CLDT). Six serogroups were identified, but most of the isolates belonged to O45, O18ab, and O75. Molecular typing indicated that most of the isolates within a flock were clonally-related. This work confirms that pigeons represent a natural reservoir of STEC strains characterized by the production of the toxin variant Stx2f, and by the frequent presence of eae and cldt genes. Further work is needed to clarify whether these STEC may represent a cause of avian disease or even a potential health hazard for humans.
Journal of Clinical Microbiology | 2003
Romolo Nonno; Elena Esposito; Gabriele Vaccari; Michela Conte; Stefano Marcon; Michele Angelo Di Bari; Ciriaco Ligios; Giovanni Di Guardo; Umberto Agrimi
ABSTRACT Concerns have been raised about the possibility that the bovine spongiform encephalopathy (BSE) agent could have been transmitted to sheep populations via contaminated feedstuffs. The objective of our study was to investigate the suitability of molecular strain typing methods as a surveillance tool for studying scrapie strain variations and for differentiating PrPSc from sheep scrapie, BSE, and sheep BSE. We studied 38 Italian sheep scrapie cases from 13 outbreaks, along with a British scrapie case, an experimental ovine BSE, and 3 BSE cases, by analyzing the glycoform patterns and the apparent molecular masses of the nonglycosylated forms of semipurified, proteinase-treated PrPSc. Both criteria were able to clearly differentiate sheep scrapie from BSE and ovine experimental BSE. PrPSc from BSE and sheep BSE showed a higher glycoform ratio and a lower molecular mass of the nonglycosylated form compared to scrapie PrPSc. Scrapie cases displayed homogeneous PrPSc features regardless of breed, flock, and geographic origin. The glycoform patterns observed varied with the antibody used, but either a monoclonal antibody (MAb) (F99/97.6.1) or a polyclonal antibody (P7-7) was able to distinguish scrapie from BSE PrPSc. While more extensive surveys are needed to further corroborate these findings, our results suggest that large-scale molecular screening of sheep populations for BSE surveillance may be eventually possible.
European Journal of Neuroscience | 2002
Giacomo Dell'Omo; Elisabetta Vannoni; Alexei L. Vyssotski; Michele Angelo Di Bari; Romolo Nonno; Umberto Agrimi; Hans-Peter Lipp
Mice inoculated with transmissible spongiform encephalopathies (TSE) show behavioural abnormalities well before the appearance of clinical signs. TSE strains are obtained by serial re‐infection of infectious brain homogenates in laboratory rodents. They are characterized by strain‐typical brain lesion profiles, which implies that they might be differentiated behaviourally as well. Seventy female C57BL/6 mice were tested, 14 per group. Controls received no or sham inocula, two other groups received scrapie strains adapted to mice (139A, ME7) and one group a mouse‐adapted BSE strain (301C). From week 7 until the end of the incubation period, 8 mice per group were subjected once every 2 weeks to open‐field and hot‐plate tests. Assessment of clinical signs, and measuring of body weight, food and water consumption were carried out weekly on the remaining animals kept in single cages. In addition, locomotor activity was recorded continuously in these mice by means of infrared detectors. Monitoring of circadian activity revealed early significant TSE strain differences, most pronounced during the nocturnal active phase. Behavioural changes in open‐field tests also occurred before the appearance of clinical signs, and differences in rearing, wall rearing and sniffing were strain‐specific, however, such differences varied according to the period of testing. Hind paw lick latencies increased equally in all groups after week 19, jump latencies also increased in the two scrapie groups but not in the BSE group. It was at this time that clinical signs first appeared consisting of ataxia, lack of balance, motor dyscoordination, and lordosis. These data imply that automated assessment of circadian activity in mice is a powerful and economical tool for early behavioural typing of TSE strains.
Archives of Virology | 2001
Gabriele Vaccari; R Petraroli; Umberto Agrimi; Claudia Eleni; Mg Perfetti; M. Di Bari; Luisella Morelli; Ciriaco Ligios; L. Busani; Romolo Nonno; G. Di Guardo
Summary. Several PrP gene polymorphisms modulate sheep scrapie susceptibility. Recently, an increase of scrapie outbreaks has been reported in Italy. A vaccine containing sheep brain homogenate was used in most of the outbreaks. We investigated PrP gene polymorphisms in scrapie-affected and clinically healthy Sarda breed sheep from a flock exposed to the aforementioned vaccine, and in affected Sarda sheep from unexposed flocks. All affected animals were (Gln/Gln)171 homozygous. Moreover, we observed no variation for Ala136 and a new polymorphism (Lys to Asn) at codon 176. Our findings confirm the correlation between scrapie and (Gln/Gln)171 in breeds with no variation for Ala136.
Journal of Food Protection | 2003
Domenico Frezza; Marco Favaro; Gabriele Vaccari; Christoph von-HOLST; Vincenzo Giambra; Elke Anklam; Daniela Bove; Piero A. Battaglia; Umberto Agrimi; Gianfranco Brambilla; Paolo Ajmone-Marsan; Marco Tartaglia
The risk of bovine spongiform encephalopathy propagation was drastically reduced after the European Union (EU) Health Authorities adopted restrictions involving a ban on animal-derived proteins in the diet of farm animals. Currently, the EUs officially recommended method for controlling meat and bone meal (MBM) in animal feed is the microscopic method, which involves the identification of bone fragments on the basis of their morphological characteristics. Recently, we demonstrated that a polymerase chain reaction (PCR)-based assay can be used for the detection of taxon-specific DNA in MBM and animal feeds. To ensure the safe rendering of animal by-products, the EU Council requires that this material be treated at 133 degrees C at 300 kPa for 20 min. Here we investigate the relationship between DNA degradation, PCR amplification, and MBM heat treatment. With a competitive PCR-based approach, we compare the amplification efficiency of bovine mitochondrial DNA target sequences of different lengths in several heat-treated MBM samples. For our method, a synthetic competitive DNA is used as an internal control for both DNA extraction and PCR reaction. A correlation between an increase in treatment temperature and a reduction in the size of the target sequences suitable for amplification was observed, suggesting progressive DNA fragmentation due to the temperature. We show that short amplicons (147 bp) can be used to detect the presence of bovine mtDNA in MBM samples treated according to the current European regulations. The use of such a competitive approach to compare amplification efficiency levels of targets of different lengths might represent a useful tool for the determination of both the amount of MBM in animal feeds and its proper heat treatment.
Journal of General Virology | 2008
Michele Angelo Di Bari; Francesca Chianini; Gabriele Vaccari; Elena Esposito; Michela Conte; Samantha L. Eaton; Scott L. Hamilton; Jeanie Finlayson; Philip Steele; Mark P. Dagleish; H.W. Reid; Moira Bruce; Martin Jeffrey; Umberto Agrimi; Romolo Nonno
Despite intensive studies on sheep scrapie, a number of questions remain unanswered, such as the natural mode of transmission and the amount of infectivity which accumulates in edible tissues at different stages of scrapie infection. Studies using the mouse model proved to be useful for recognizing scrapie strain diversity, but the low sensitivity of mice to some natural scrapie isolates hampered further investigations. To investigate the sensitivity of bank voles (Myodes glareolus) to scrapie, we performed end-point titrations from two unrelated scrapie sources. Similar titres [10(5.5) ID50 U g(-1) and 10(5.8) ID50 U g(-1), both intracerebrally (i.c.)] were obtained, showing that voles can detect infectivity up to 3-4 orders of magnitude lower when compared with laboratory mice. We further investigated the relationships between PrPSc molecular characteristics, strain and prion titre in the brain and tonsil of the same scrapie-affected sheep. We found that protease-resistant PrPSc fragments (PrPres) from brain and tonsil had different molecular features, but induced identical disease phenotypes in voles. The infectivity titre of the tonsil estimated by incubation time assay was 10(4.8) i.c. ID50 U g(-1), i.e. fivefold less than the brain. This compared well with the relative PrPres content, which was 8.8-fold less in tonsil than in brain. Our results suggest that brain and tonsil harboured the same prion strain showing different glycoprofiles in relation to the different cellular/tissue types in which it replicated, and that a PrPSc-based estimate of scrapie infectivity in sheep tissues could be achieved by combining sensitive PrPres detection methods and bioassay in voles.
PLOS Pathogens | 2008
Umberto Agrimi; Romolo Nonno; Giacomo Dell'Omo; Michele Angelo Di Bari; Michela Conte; Barbara Chiappini; Elena Esposito; Giovanni Di Guardo; Otto Windl; Gabriele Vaccari; Hans-Peter Lipp
The bank vole is a rodent susceptible to different prion strains from humans and various animal species. We analyzed the transmission features of different prions in a panel of seven rodent species which showed various degrees of phylogenetic affinity and specific prion protein (PrP) sequence divergences in order to investigate the basis of vole susceptibility in comparison to other rodent models. At first, we found a differential susceptibility of bank and field voles compared to C57Bl/6 and wood mice. Voles showed high susceptibility to sheep scrapie but were resistant to bovine spongiform encephalopathy, whereas C57Bl/6 and wood mice displayed opposite features. Infection with mouse-adapted scrapie 139A was faster in voles than in C57Bl/6 and wood mice. Moreover, a glycoprofile change was observed in voles, which was reverted upon back passage to mice. All strains replicated much faster in voles than in mice after adapting to the new species. PrP sequence comparison indicated a correlation between the transmission patterns and amino acids at positions 154 and 169 (Y and S in mice, N and N in voles). This correlation was confirmed when inoculating three additional rodent species: gerbils, spiny mice and oldfield mice with sheep scrapie and 139A. These rodents were chosen because oldfield mice do have the 154N and 169N substitutions, whereas gerbil and spiny mice do not have them. Our results suggest that PrP residues 154 and 169 drive the susceptibility, molecular phenotype and replication rate of prion strains in rodents. This might have implications for the assessment of host range and molecular traceability of prion strains, as well as for the development of improved animal models for prion diseases.
Journal of Virology | 2007
Gabriele Vaccari; Claudia D'Agostino; Romolo Nonno; Francesca Rosone; Michela Conte; Michele Angelo Di Bari; Barbara Chiappini; Elena Esposito; Luigi De Grossi; Francesco Giordani; Stefano Marcon; Luisella Morelli; Renata Borroni; Umberto Agrimi
ABSTRACT The susceptibility of sheep to classical scrapie and bovine spongiform encephalopathy (BSE) is mainly influenced by prion protein (PrP) polymorphisms A136V, R154H, and Q171R, with the ARR allele associated with significantly decreased susceptibility. Here we report the protective effect of the amino acid substitution M137T, I142K, or N176K on the ARQ allele in sheep experimentally challenged with either scrapie or BSE. Such observations suggest the existence of additional PrP alleles that significantly decrease the susceptibility of sheep to transmissible spongiform encephalopathies, which may have important implications for disease eradication strategies.
The Lancet | 1992
L.R Angeletti; Umberto Agrimi; D French; C Curia; Renato Mariani-Costantini
Votive tablets found during the excavation of shrines of the Graeco-Roman god of medicine (Asklepios or Aesculapius) associate the healing of superficial lesions with contact with the oral cavity of non-poisonous serpents. We suggest that this may have been the empirical exploitation of the healing properties of salivary growth factors. By immunohistochemistry and immunoblotting we demonstrate the expression of the epidermal growth factor and its receptor in the oral, upper digestive, and salivary epithelia of Elaphe quatuorlineata, a species probably used in healing rituals.