Umberto Zottich
Federal University of Roraima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Umberto Zottich.
Biochimica et Biophysica Acta | 2011
Umberto Zottich; Maura Da Cunha; André de Oliveira Carvalho; Germana Bueno Dias; Nádia C.M. Silva; Izabela S. Santos; Viviane V. do Nacimento; Emilio de Castro Miguel; Olga Lima Tavares Machado; Valdirene M. Gomes
BACKGROUND A growing number of cysteine-rich antimicrobial peptides (AMPs) have been isolated from plants and particularly from seeds. It has become increasingly clear that these peptides, which include lipid transfer proteins (LTPs), play an important role in the protection of plants against microbial infection. METHODS Peptides from Coffea canephora seeds were extracted in Tris-HCl buffer (pH 8.0), and chromatographic purification of LTP was performed by DEAE and reverse-phase HPLC. The purified peptide was submitted to amino acid sequence, antimicrobial activity and mammalian α-amylase inhibitory analyses. RESULTS The purified peptide of 9kDa had homology to LTPs isolated from different plants. Bidimensional electrophoresis of the 9kDa band showed the presence of two isoforms with pIs of 8.0 and 8.5. Cc-LTP(1) exhibited strong antifungal activity, against Candida albicans, and also promoted morphological changes including the formation of pseudohyphae on Candida tropicalis, as revealed by electron micrograph. Our results show that Cc-LTP(1) interfered in a dose-dependent manner with glucose-stimulated, H(+)-ATPase-dependent acidification of yeast medium and that the peptide permeabilized yeast plasma membranes to the dye SYTOX green, as verified by fluorescence microscopy. Interestingly, we also showed for the first time that the well characterized LTP(1) family, represented here by Cc-LTP(1), was also able to inhibit mammalian α-amylase activity in vitro. CONCLUSIONS AND GENERAL SIGNIFICANCE In this work we purified, characterized and evaluated the in vitro effect on yeast of a new peptide from coffee, named Cc-LPT1, which we also showed, for the first time, the ability to inhibit mammalian α-amylase activity.
Genetics and Molecular Research | 2013
Germana Bueno Dias; Valdirene M. Gomes; Tarsila Maria da Silva Moraes; Umberto Zottich; Guilherme Rodrigues Rabelo; André de Oliveira Carvalho; M Moulin; L S A Gonçalves; Rosana Rodrigues; M. Da Cunha
Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.
Biochimica et Biophysica Acta | 2013
Umberto Zottich; Maura Da Cunha; André de Oliveira Carvalho; Germana Bueno Dias; Nádia Casarin; Ilka M. Vasconcelos; Valdirene M. Gomes
BACKGROUND The superfamily of glycine-rich proteins (GRPs) corresponds to a large and complex group of plant proteins that may be involved in many developmental and physiological processes such as RNA biogenesis, stress tolerance, pollen hydration and plant-pathogen interactions, showing defensive activity against fungi, bacteria and viruses. METHODS In this study, the peptides from Coffea canephora seeds were extracted according to the methods of Egorov et al. (2005). The purified peptide was submitted for amino acid sequencing and antimicrobial activity measurement. RESULTS The purified peptide with a molecular weight of 7kDa, named Cc-GRP, was observed to display homology to GRPs. The Cc-GRP-fungi interaction led to morphological changes and membrane permeability, including the formation of pseudohyphae, which were visualized with the aid of SYTOX green dye. Additionally, Cc-GRP also prevented colony formation by yeasts. Antifungal assays of Fusarium oxysporum and Colletotrichum lindemuthianum, observed by light microscopy, showed that the two molds exhibited morphological changes after the growth assay. Cc-GRP coupled to FITC and its subsequent treatment with DAPI revealed the presence of the peptide in the cell wall, cell surface and nucleus of F. oxysporum. CONCLUSIONS AND GENERAL SIGNIFICANCE In this work we purified, characterized and evaluated the in vitro effect on fungi of a new peptide from coffee, named Cc-GRP, which is involved in the plant defense system against pathogens by acting through a membrane permeabilization mechanism and localized in the nuclei of fungal cells. We also showed, for the first time, the intracellular localization of Cc-GRP during antimicrobial assay.
BMC Biochemistry | 2014
Érica O. Mello; Izabela S. Santos; André de Oliveira Carvalho; Luísa Sorrentino de Souza; Gonçalo Apolinário de Souza-Filho; Viviane Veiga do Nascimento; Olga Lt Machado; Umberto Zottich; Valdirene M. Gomes
BackgroundDefensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, Pv D1, from Phaseolus vulgaris L. (common bean) seeds.ResultsThe aim of this study was to overexpress Pv D1 in a prokaryotic system, verify the biologic function of recombinant Pv D1 (Pv D1r) by comparing the antimicrobial activity of Pv D1r to that of the natural defensin, Pv D1, and use a mutant Candida albicans strain that lacks the gene for sphingolipid biosynthesis to unravel the target site of the Pv D1r in C. albicans cells. The cDNA encoding Pv D1, which was previously obtained, was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform bacterial cells (Rosetta Gami 2 (DE3) pLysS) leading to recombinant protein expression. After expression had been induced, Pv D1r was purified, cleaved with enterokinase and repurified by chromatographic steps. N-terminal amino acid sequencing showed that the overall process of the recombinant production of Pv D1r, including cleavage with the enterokinase, was successful. Additionally, modeling revealed that Pv D1r had a structure that was similar to the defensin isolated from plants. Purified Pv D1 and Pv D1r possessed inhibitory activity against the growth of the wild-type pathogenic yeast strain C. albicans. Both defensins, however, did not present inhibitory activity against the mutant strain of C. albicans. Antifungal assays with the wild-type C. albicans strains showed morphological changes upon observation by light microscopy following growth assays. Pv D1r was coupled to FITC, and the subsequent treatment of wild type C. albicans with DAPI revealed that the labeled peptide was intracellularly localized. In the mutant strain, no intracellular labeling was detected.ConclusionOur results indicate that Pv D1r retains full biological activity after recombinant production, enterokinase cleavage and purification. Additionally, our results from the antimicrobial assay, the microscopic analysis and the Pv D1r-FITC labeling assays corroborate each other and lead us to suggest that the target of Pv D1 in C. albicans cells is the sphingolipid glucosylceramide.
Genetics and Molecular Research | 2016
Gabriela C. Vieira Bard; Umberto Zottich; T.A.M. Souza; Suzanna F. F. Ribeiro; Germana Bueno Dias; Saulo Pireda; M. Da Cunha; Rosana Rodrigues; Luciano de Sousa Pereira; Olga Lima Tavares Machado; André de Oliveira Carvalho; Valdirene M. Gomes
Coffee, an agronomical crop of great economic importance, is also among the most commonly traded commodities in worldwide markets. Antimicrobial peptides, which play a role in plant defense, have been identified and isolated particularly from seeds. We isolated and immunolocalized Cc-LTP2, a new lipid transfer protein (LTP) from Coffea canephora seeds. We report its antimicrobial activity against various phytopathogenic fungi of economic importance, and against the bacterium Xanthomonas euvesicatoria. Peptides from C. canephora seeds were initially extracted using acid buffer and subjected to ion-exchange and reverse-phase chromatographies. A purified peptide of approximately 9 kDa, which we named Cc-LTP2, was then subjected to amino acid sequencing. The analyses showed that it was similar to LTPs isolated from various plants. The tissue and subcellular localization of C. canephora LTPs indicated that they were located in cell walls and intracellular palisade parenchyma, mainly in large vacuoles. The results of immunohistochemistry and histochemistry superposed from C. canephora seed tissues showed that LTPs and lipid bodies are present in organelles, supporting the hypothesis that LTPs from seeds are involved in lipid mobilization during germination. Cc-LTP2 did inhibit the development of the phytopathogenic fungi Colletotrichum lindemuthianum, Colletotrichum gloeosporioides, Fusarium solani, Fusarium lateritium, and Colletotrichum sp, but did inhibit X. euvesicatoria. Cc-LTP2 also increased membrane permeability and induced endogenous production of reactive oxygen species in all the fungi tested.
Acta Botanica Brasilica | 2011
Guilherme Rodrigues Rabelo; Jonas de Brito Campolina Marques; Umberto Zottich; Germana Bueno Dias; Emilio de Castro Miguel; Valdirene M. Gomes; Maura Da Cunha
Pachystroma longifolium is an evergreen species of Euphorbiaceae that occurs in tabuleiro forest, a type of lowland Atlantic Forest. The site chosen for this study was a fragment of tabuleiro forest that has a history of being selectively logged for timber. P. longifolium is very successful at colonizing disturbed areas in this forest fragment in comparison with preserved fragments. In the present work, which was based on using different microscopy (electron and light microscopy, X-ray analysis) and biochemistry techniques, we describe the leaf and latex traits of P. longifolium and their role as defense mechanisms against desiccation and herbivory. Our results suggest the richness of P. longifolium populations, in the disturbed forest area studied, is primarily a consequence of unpalatable leaves because of an abundance of calcium oxalate crystals in the subjacent epidermis; the presence of phenolic compounds in the adaxial surface; and a laticifer system that contains a complex mixture of proteins, which provides resistance to herbivores. In addition, this species is resistant to desiccation during dry periods because of an extensive amount of wax that occurs on the outer cell walls of the epidermis, and its ability to retain water because of a biseriate epidermis.
International Journal of Microbiology | 2018
Gabriela C. Vieira Bard; Gabriel Bonan Taveira; Thaynã Amanda Melo Souza; Érica O. Mello; Sávio Bastos de Souza; Alessandro Coutinho Ramos; André de Oliveira Carvalho; Lídia da Silva Pereira; Umberto Zottich; Rosana Rodrigues; Valdirene M. Gomes
The objective of the present study was to evaluate the antimicrobial activity of the Cc-LTP2 and Cc-GRP peptides isolated from Coffea canephora seeds and their possible synergistic activity with the azole drug fluconazole and characterize their mechanisms of action on cells of pathogenic fungi. Cc-LTP2 and Cc-GRP alone or in combination with 20 µg/mL of fluconazole were evaluated for their antimicrobial activity on the fungus Fusarium solani, and the effects of these peptides on the permeability of membranes and the induction of oxidative stress were determined. Our results show that these peptides at a concentration of 400 µg/mL combined with 20 µg/mL of fluconazole were able to inhibit the growth of the tested fungi, promote changes in their growth pattern, permeabilize the membrane, and induce reactive oxygen species (ROS). Some of these results were also observed with the peptides alone or with fluconazole alone, suggesting that the peptides act synergistically, promoting the potentiation of antimicrobial action. In this study, it was shown that Cc-LTP2 and Cc-GRP in combination with fluconazole were able to inhibit the growth of the fungus F. solani, to promote permeabilization of its membrane, and to induce the production of ROS, suggesting a combinatorial activity between the peptides and fluconazole.
Acta Physiologiae Plantarum | 2018
Lídia da Silva Pereira; Viviane Veiga do Nascimento; Suzanna F. F. Ribeiro; Rosana Rodrigues; Kátia Valevski Sales Fernandes; André de Oliveira Carvalho; Ilka M. Vasconcelos; Cíntia dos Santos Bento; Cláudia Pombo Sudré; Umberto Zottich; Valdirene M. Gomes
This study aimed to detect and characterize antimicrobial proteins, especially antimicrobial peptides (AMPs) from leaves and roots of Capsicum annuum and to evaluate their inhibitory activities against different phytopathogenic fungi and the bacterium Xanthomonas euvesicatoria. Two methodologies were used for the extraction of peptides from leaves and roots of C. annuum: acid and ethanolic extraction. Extracts were subjected to reversed-phase chromatography on HPLC. The extraction and purification procedures were analysed by uni- and bi-dimensional electrophoresis in tricine gels. Our results show that alcoholic and acid extracts from both tissues can inhibit the growth of the phytopathogenics fungi C. lindemuthianum and C. gloeosporioides. The acid extracts from both tissues are active against X. euvesicatoria and only leaf extracts displayed specific inhibitory activity towards trypsin and α-amylase activity. The data compiled here aim to contribute to establish the multiplicity of potential uses of plant AMPs for the control of pests and pathogens of agricultural relevance.
Acta Botanica Brasilica | 2017
Emilio de Castro Miguel; Saulo Pireda; Cláudia Franca Barros; Umberto Zottich; Valdirene M. Gomes; Flávio Costa Miguens; Maura Da Cunha
Protein Journal | 2014
Umberto Zottich; Maura Da Cunha; Germana Bueno Dias; Guilherme Rodrigues Rabelo; Antonia Elenir Amancio Oliveira; André de Oliveira Carvalho; Kátia Valevski Sales Fernandes; Viviane Veiga do Nascimento; Valdirene M. Gomes