Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Umer Zeeshan Ijaz is active.

Publication


Featured researches published by Umer Zeeshan Ijaz.


Nature Methods | 2014

Binning metagenomic contigs by coverage and composition

Johannes Alneberg; Brynjar Smári Bjarnason; Ino de Bruijn; Melanie Schirmer; Joshua Quick; Umer Zeeshan Ijaz; Leo Lahti; Nicholas J. Loman; Anders F. Andersson; Christopher Quince

Shotgun sequencing enables the reconstruction of genomes from complex microbial communities, but because assembly does not reconstruct entire genomes, it is necessary to bin genome fragments. Here we present CONCOCT, a new algorithm that combines sequence composition and coverage across multiple samples, to automatically cluster contigs into genomes. We demonstrate high recall and precision on artificial as well as real human gut metagenome data sets.


Nucleic Acids Research | 2015

Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform

Melanie Schirmer; Umer Zeeshan Ijaz; Rosalinda D'Amore; Neil Hall; William T. Sloan; Christopher Quince

With read lengths of currently up to 2 × 300 bp, high throughput and low sequencing costs Illuminas MiSeq is becoming one of the most utilized sequencing platforms worldwide. The platform is manageable and affordable even for smaller labs. This enables quick turnaround on a broad range of applications such as targeted gene sequencing, metagenomics, small genome sequencing and clinical molecular diagnostics. However, Illumina error profiles are still poorly understood and programs are therefore not designed for the idiosyncrasies of Illumina data. A better knowledge of the error patterns is essential for sequence analysis and vital if we are to draw valid conclusions. Studying true genetic variation in a population sample is fundamental for understanding diseases, evolution and origin. We conducted a large study on the error patterns for the MiSeq based on 16S rRNA amplicon sequencing data. We tested state-of-the-art library preparation methods for amplicon sequencing and showed that the library preparation method and the choice of primers are the most significant sources of bias and cause distinct error patterns. Furthermore we tested the efficiency of various error correction strategies and identified quality trimming (Sickle) combined with error correction (BayesHammer) followed by read overlapping (PANDAseq) as the most successful approach, reducing substitution error rates on average by 93%.


BMC Genomics | 2016

A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling

Rosalinda D’Amore; Umer Zeeshan Ijaz; Melanie Schirmer; John Kenny; R. Gregory; Alistair C. Darby; Migun Shakya; Mircea Podar; Christopher Quince; Neil Hall

BackgroundIn the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. The most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions are interrogated.ResultsWe assembled 2 synthetic communities with an even (EM) and uneven (UM) distribution of archaeal and bacterial strains and species, as metagenomic control material, to assess performance of different experimental strategies. The 2 synthetic communities were used in this study, to highlight the limitations and the advantages of the leading sequencing platforms: MiSeq (Illumina), The Pacific Biosciences RSII, 454 GS-FLX/+ (Roche), and IonTorrent (Life Technologies). We describe an extensive survey based on synthetic communities using 3 experimental designs (fusion primers, universal tailed tag, ligated adaptors) across the 9 hypervariable 16S rDNA regions. We demonstrate that library preparation methodology can affect data interpretation due to different error and chimera rates generated during the procedure. The observed community composition was always biased, to a degree that depended on the platform, sequenced region and primer choice. However, crucially, our analysis suggests that 16S rRNA sequencing is still quantitative, in that relative changes in abundance of taxa between samples can be recovered, despite these biases.ConclusionWe have assessed a range of experimental conditions across several next generation sequencing platforms using the most up-to-date configurations. We propose that the choice of sequencing platform and experimental design needs to be taken into consideration in the early stage of a project by running a small trial consisting of several hypervariable regions to quantify the discriminatory power of each region. We also suggest that the use of a synthetic community as a positive control would be beneficial to identify the potential biases and procedural drawbacks that may lead to data misinterpretation. The results of this study will serve as a guideline for making decisions on which experimental condition and sequencing platform to consider to achieve the best microbial profiling.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010

Three-dimensional ultrasound imaging

Richard W. Prager; Umer Zeeshan Ijaz; Graham M. Treece

Abstract This review is about the development of three-dimensional (3D) ultrasonic medical imaging, how it works, and where its future lies. It assumes knowledge of two-dimensional (2D) ultrasound, which is covered elsewhere in this issue. The three main ways in which 3D ultrasound may be acquired are described: the mechanically swept 3D probe, the 2D transducer array that can acquire intrinsically 3D data, and the freehand 3D ultrasound. This provides an appreciation of the constraints implicit in each of these approaches together with their strengths and weaknesses. Then some of the techniques that are used for processing the 3D data and the way this can lead to information of clinical value are discussed. A table is provided to show the range of clinical applications reported in the literature. Finally, the discussion relating to the technology and its clinical applications to explain why 3D ultrasound has been relatively slow to be adopted in routine clinics is drawn together and the issues that will govern its development in the future explored.


The American Journal of Gastroenterology | 2015

Extensive modulation of the fecal metagenome in children With Crohn’s disease during exclusive enteral nutrition

Christopher Quince; Umer Zeeshan Ijaz; Nicholas J. Loman; A. Murat Eren; Delphine Saulnier; Julie Russell; Sarah J. Haig; Szymon T. Calus; Joshua Quick; Andrew H. Barclay; Martin Bertz; Michael Blaut; Richard Hansen; Paraic McGrogan; Richard K. Russell; Christine A. Edwards; Konstantinos Gerasimidis

OBJECTIVES:Exploring associations between the gut microbiota and colonic inflammation and assessing sequential changes during exclusive enteral nutrition (EEN) may offer clues into the microbial origins of Crohn’s disease (CD).METHODS:Fecal samples (n=117) were collected from 23 CD and 21 healthy children. From CD children fecal samples were collected before, during EEN, and when patients returned to their habitual diets. Microbiota composition and functional capacity were characterized using sequencing of the 16S rRNA gene and shotgun metagenomics.RESULTS:Microbial diversity was lower in CD than controls before EEN (P=0.006); differences were observed in 36 genera, 141 operational taxonomic units (OTUs), and 44 oligotypes. During EEN, the microbial diversity of CD children further decreased, and the community structure became even more dissimilar than that of controls. Every 10 days on EEN, 0.6 genus diversity equivalents were lost; 34 genera decreased and one increased during EEN. Fecal calprotectin correlated with 35 OTUs, 14 of which accounted for 78% of its variation. OTUs that correlated positively or negatively with calprotectin decreased during EEN. The microbiota of CD patients had a broader functional capacity than healthy controls, but diversity decreased with EEN. Genes involved in membrane transport, sulfur reduction, and nutrient biosynthesis differed between patients and controls. The abundance of genes involved in biotin (P=0.005) and thiamine biosynthesis decreased (P=0.017), whereas those involved in spermidine/putrescine biosynthesis (P=0.031), or the shikimate pathway (P=0.058), increased during EEN.CONCLUSIONS:Disease improvement following treatment with EEN is associated with extensive modulation of the gut microbiome.


Environmental Microbiology | 2015

Bacterial diversity along a 2600 km river continuum

Domenico Savio; Lucas Sinclair; Umer Zeeshan Ijaz; Juraj Parajka; Georg H. Reischer; Philipp Stadler; Alfred Paul Blaschke; Günter Blöschl; Robert L. Mach; Alexander K. T. Kirschner; Andreas H. Farnleitner; Alexander Eiler

Summary The bacterioplankton diversity in large rivers has thus far been under‐sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA‐gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free‐living and particle‐associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the P olynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater‐affiliated bacteria. Based on views of the meta‐community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.


BMC Bioinformatics | 2016

Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data

Melanie Schirmer; Rosalinda D’Amore; Umer Zeeshan Ijaz; Neil Hall; Christopher Quince

BackgroundIllumina’s sequencing platforms are currently the most utilised sequencing systems worldwide. The technology has rapidly evolved over recent years and provides high throughput at low costs with increasing read-lengths and true paired-end reads. However, data from any sequencing technology contains noise and our understanding of the peculiarities and sequencing errors encountered in Illumina data has lagged behind this rapid development.ResultsWe conducted a systematic investigation of errors and biases in Illumina data based on the largest collection of in vitro metagenomic data sets to date. We evaluated the Genome Analyzer II, HiSeq and MiSeq and tested state-of-the-art low input library preparation methods. Analysing in vitro metagenomic sequencing data allowed us to determine biases directly associated with the actual sequencing process. The position- and nucleotide-specific analysis revealed a substantial bias related to motifs (3mers preceding errors) ending in “GG”. On average the top three motifs were linked to 16 % of all substitution errors. Furthermore, a preferential incorporation of ddGTPs was recorded. We hypothesise that all of these biases are related to the engineered polymerase and ddNTPs which are intrinsic to any sequencing-by-synthesis method. We show that quality-score-based error removal strategies can on average remove 69 % of the substitution errors - however, the motif-bias remains.ConclusionSingle-nucleotide polymorphism changes in bacterial genomes can cause significant changes in phenotype, including antibiotic resistance and virulence, detecting them within metagenomes is therefore vital. Current error removal techniques are not designed to target the peculiarities encountered in Illumina sequencing data and other sequencing-by-synthesis methods, causing biases to persist and potentially affect any conclusions drawn from the data. In order to develop effective diagnostic and therapeutic approaches we need to be able to identify systematic sequencing errors and distinguish these errors from true genetic variation.


mSphere | 2016

Metagenomic Evidence for the Presence of Comammox Nitrospira-Like Bacteria in a Drinking Water System

Ameet J. Pinto; Daniel N. Marcus; Umer Zeeshan Ijaz; Quyen Melina Bautista de Lose Santos; Gregory J. Dick; Lutgarde Raskin

Nitrification plays an important role in regulating the concentrations of inorganic nitrogen species in a range of environments, from drinking water and wastewater treatment plants to the oceans. Until recently, aerobic nitrification was considered to be a two-step process involving ammonia-oxidizing bacteria or archaea and nitrite-oxidizing bacteria. This process requires close cooperation between these two functional guilds for complete conversion of ammonia to nitrate, without the accumulation of nitrite or other intermediates, such as nitrous oxide, a potent greenhouse gas. The discovery of a single organism with the potential to oxidize both ammonia and nitrite adds a new dimension to the current understanding of aerobic nitrification, while presenting opportunities to rethink nitrogen management in engineered systems. ABSTRACT We report metagenomic evidence for the presence of a Nitrospira-like organism with the metabolic potential to perform the complete oxidation of ammonia to nitrate (i.e., it is a complete ammonia oxidizer [comammox]) in a drinking water system. This metagenome bin was discovered through shotgun DNA sequencing of samples from biologically active filters at the drinking water treatment plant in Ann Arbor, MI. Ribosomal proteins, 16S rRNA, and nxrA gene analyses confirmed that this genome is related to Nitrospira-like nitrite-oxidizing bacteria. The presence of the full suite of ammonia oxidation genes, including ammonia monooxygenase and hydroxylamine dehydrogenase, on a single ungapped scaffold within this metagenome bin suggests the presence of recently discovered comammox potential. Evaluations based on coverage and k-mer frequency distribution, use of two different genome-binning approaches, and nucleic acid and protein similarity analyses support the presence of this scaffold within the Nitrospira metagenome bin. The amoA gene found in this metagenome bin is divergent from those of canonical ammonia and methane oxidizers and clusters closely with the unusual amoA gene of comammox Nitrospira. This finding suggests that previously reported imbalances in abundances of nitrite- and ammonia-oxidizing bacteria/archaea may likely be explained by the capacity of Nitrospira-like organisms to completely oxidize ammonia. This finding might have significant implications for our understanding of microbially mediated nitrogen transformations in engineered and natural systems. IMPORTANCE Nitrification plays an important role in regulating the concentrations of inorganic nitrogen species in a range of environments, from drinking water and wastewater treatment plants to the oceans. Until recently, aerobic nitrification was considered to be a two-step process involving ammonia-oxidizing bacteria or archaea and nitrite-oxidizing bacteria. This process requires close cooperation between these two functional guilds for complete conversion of ammonia to nitrate, without the accumulation of nitrite or other intermediates, such as nitrous oxide, a potent greenhouse gas. The discovery of a single organism with the potential to oxidize both ammonia and nitrite adds a new dimension to the current understanding of aerobic nitrification, while presenting opportunities to rethink nitrogen management in engineered systems.


Measurement Science and Technology | 2007

Sensitivity map generation in electrical capacitance tomography using mixed normalization models

Yongsung Kim; Seong Hun Lee; Umer Zeeshan Ijaz; Kyung Youn Kim; Bong Yeol Choi

This work is concerned with the generation of sensitivity maps in electrical capacitance tomography based on the concepts of electrical field centre lines. Electrical capacitance tomography systems are normalized at the upper and lower permittivity values for image reconstruction. Conventional normalization assumes the distribution of materials in parallel and results in normalized capacitance as a linear function of measured capacitance. A recent approach is the usage of a series sensor model which results in normalized capacitance as a nonlinear function of measured capacitance. In this study different forms of normalizations are combined with sensitivity maps based on electrical field centre lines and it is shown that a mix of two normalization models improves the reconstruction performance.


Philosophical Transactions of the Royal Society A | 2009

Unscented Kalman filter approach to tracking a moving interfacial boundary in sedimentation processes using three-dimensional electrical impedance tomography

Anil Kumar Khambampati; Ahmar Rashid; Umer Zeeshan Ijaz; Sin Kim; Manuchehr Soleimani; Kyung Youn Kim

The monitoring of solid–fluid suspensions under the influence of gravity is widely used in industrial processes. By considering sedimentation layers with different electrical properties, non-invasive methods such as electrical impedance tomography (EIT) can be used to estimate the settling curves and velocities. In recent EIT studies, the problem of estimating the locations of phase interfaces and phase conductivities has been treated as a nonlinear state estimation problem and the extended Kalman filter (EKF) has been successfully applied. However, the EKF is based on a Gaussian assumption and requires a linearized measurement model. The linearization (or derivation of the Jacobian) is possible when there are no discontinuities in the system. Furthermore, having a complex phase interface representation makes derivation of the Jacobian a tedious task. Therefore, in this paper, we explore the unscented Kalman filter (UKF) as an alternative approach for estimating phase interfaces and conductivities in sedimentation processes. The UKF uses a nonlinear measurement model and is therefore more accurate. In order to justify the proposed approach, extensive numerical experiments have been performed and a comparative analysis with the EKF is provided.

Collaboration


Dive into the Umer Zeeshan Ijaz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sin Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Kyung Youn Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard K. Russell

Royal Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge