Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Umut Altunoglu is active.

Publication


Featured researches published by Umut Altunoglu.


Nature Genetics | 2012

Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan.

Tony Roscioli; Erik-Jan Kamsteeg; K Buysse; Isabelle Maystadt; Jeroen van Reeuwijk; Christa van den Elzen; Ellen van Beusekom; Moniek Riemersma; Rolph Pfundt; Lisenka E.L.M. Vissers; Margit Schraders; Umut Altunoglu; Michael Buckley; Han G. Brunner; Bernard Grisart; Huiqing Zhou; Joris A. Veltman; Christian Gilissen; Grazia M.S. Mancini; Paul Delrée; M.A.A.P. Willemsen; Danijela Petković Ramadža; David Chitayat; Christopher L. Bennett; Eamonn Sheridan; Els Peeters; Gita M. B. Tan-Sindhunata; Christine E.M. de Die-Smulders; Koenraad Devriendt; Hülya Kayserili

Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant α-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated α-dystroglycan. These results implicate ISPD in α-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.


Cell | 2014

CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration.

Ashleigh E. Schaffer; Veerle Rc Eggens; Ahmet Okay Caglayan; Miriam S. Reuter; Eric Scott; Nicole G. Coufal; Jennifer L. Silhavy; Yuanchao Xue; Hülya Kayserili; Katsuhito Yasuno; Rasim Ozgur Rosti; Mostafa Abdellateef; Caner Caglar; Paul R. Kasher; J. Leonie Cazemier; Marian A. J. Weterman; Vincent Cantagrel; Na Cai; Christiane Zweier; Umut Altunoglu; N. Bilge Satkin; Fesih Aktar; Beyhan Tüysüz; Cengiz Yalcinkaya; Hüseyin Çaksen; Kaya Bilguvar; Xiang-Dong Fu; Christopher R. Trotta; Stacey Gabriel; André Reis

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Human Mutation | 2016

Mutation Update for Kabuki Syndrome Genes KMT2D and KDM6A and Further Delineation of X-Linked Kabuki Syndrome Subtype 2.

Nina Bögershausen; Vincent Gatinois; Vera Riehmer; Hülya Kayserili; Jutta Becker; Michaela Thoenes; Pelin Ozlem Simsek-Kiper; Mouna Barat-Houari; Nursel Elcioglu; Dagmar Wieczorek; Sigrid Tinschert; Guillaume Sarrabay; Tim M. Strom; Aurelie Fabre; Gareth Baynam; Elodie Sanchez; Gudrun Nürnberg; Umut Altunoglu; Yline Capri; Bertrand Isidor; Didier Lacombe; Carole Corsini; Valérie Cormier-Daire; Damien Sanlaville; Fabienne Giuliano; Kim-Hanh Le Quan Sang; Honorine Kayirangwa; Peter Nürnberg; Thomas Meitinger; Koray Boduroglu

Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up‐to‐date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well‐defined X‐linked KS type 2, and comment on phenotype–genotype correlations as well as sex‐specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki‐like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients.


American Journal of Medical Genetics Part A | 2012

Mild nasal malformations and parietal foramina caused by homozygous ALX4 mutations

Hülya Kayserili; Umut Altunoglu; H. Ozgur; Seher Basaran; Zehra Oya Uyguner

We report on a boy born to consanguineous parents, who had hypertelorism, a broad nasal bridge, ridge and tip, bifid nasal tip, cleft alae nasi, broad columella, unilateral preauricular tag, shallow labiogingival sulcus, and bilateral large parietal foramina. Cranial MRI revealed a kinked corpus body and small cerebellar vermis. Molecular analysis uncovered a homozygous c.673C > G (p.Q225E) mutation in ALX4 gene. We compare the relatively mild phenotype in the patient to the more marked phenotype described in other patients with homozygous ALX4 mutations, and to the phenotypes in patients with mutations in other ALX genes.


The Journal of Clinical Endocrinology and Metabolism | 2016

Natural History of Congenital Generalized Lipodystrophy: A Nationwide Study From Turkey

Baris Akinci; Huseyin Onay; Tevfik Demir; Samim Ozen; Hülya Kayserili; Gulcin Akinci; Banu Güzel Nur; Beyhan Tüysüz; Mehmet Nuri Özbek; Adem Gungor; Ilgin Yildirim Simsir; Canan Altay; Leyla Demir; Enver Simsek; Murat Atmaca; Haluk Topaloglu; Habib Bilen; Hulusi Atmaca; Tahir Atik; Umit Cavdar; Umut Altunoglu; Ayca Dilruba Aslanger; Ercan Mihci; Mustafa Secil; Fusun Saygili; Abdurrahman Comlekci; Abhimanyu Garg

CONTEXT Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by near-total lack of body fat. OBJECTIVE We aimed to study natural history and disease burden of various subtypes of CGL. DESIGN We attempted to ascertain nearly all patients with CGL in Turkey. SETTING This was a nationwide study. PATIENTS OR OTHER PARTICIPANTS Participants included 33 patients (22 families) with CGL and 30 healthy controls. MAIN OUTCOME MEASURE(S) We wanted to ascertain genotypes by sequencing of the known genes. Whole-body magnetic resonance imaging was used to investigate the extent of fat loss. Metabolic abnormalities and end-organ complications were measured on prospective follow-up. RESULTS Analysis of the AGPAT2 gene revealed four previously reported and four novel mutations (CGL1; c.144C>A, c.667_705delinsCTGCG, c.268delC, and c.316+1G>T). Analysis of the BSCL2 gene revealed four different homozygous and one compound heterozygous possible disease-causing mutations (CGL2), including four novel mutations (c.280C>T, c.631delG, c.62A>T, and c.465-468delGACT). Two homozygous PTRF mutations (c.481-482insGTGA and c.259C>T) were identified (CGL4). Patients with CGL1 had preservation of adipose tissue in the palms, soles, scalp, and orbital region, and had relatively lower serum adiponectin levels as compared to CGL2 patients. CGL4 patients had myopathy and other distinct clinical features. All patients developed various metabolic abnormalities associated with insulin resistance. Hepatic involvement was more severe in CGL2. End-organ complications were observed at young ages. Two patients died at age 62 years from cardiovascular events. CONCLUSIONS CGL patients from Turkey had both previously reported and novel mutations of the AGPAT2, BSCL2, and PTRF genes. Our study highlights the early onset of severe metabolic abnormalities and increased risk of end-organ complications in patients with CGL.


Journal of Medical Genetics | 2016

Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes

Susanne Roosing; Marta Romani; Mala Isrie; Rasim Ozgur Rosti; Alessia Micalizzi; Damir Musaev; Tommaso Mazza; Lihadh Al-Gazali; Umut Altunoglu; Eugen Boltshauser; Stefano D'Arrigo; Bart De Keersmaecker; Hülya Kayserili; Sarah Brandenberger; I. Kraoua; Paul R. Mark; Trudy McKanna; Joachim Van Keirsbilck; Philippe Moerman; Andrea Poretti; Ratna Puri; Hilde Van Esch; Joseph G. Gleeson; Enza Maria Valente

Background Ciliopathies are an extensive group of autosomal recessive or X-linked disorders with considerable genetic and clinical overlap, which collectively share multiple organ involvement and may result in lethal or viable phenotypes. In large numbers of cases the genetic defect remains yet to be determined. The aim of this study is to describe the mutational frequency and phenotypic spectrum of the CEP120 gene. Methods Exome sequencing was performed in 145 patients with Joubert syndrome (JS), including 15 children with oral-facial-digital syndrome type VI (OFDVI) and 21 Meckel syndrome (MKS) fetuses. Moreover, exome sequencing was performed in one fetus with tectocerebellar dysraphia with occipital encephalocele (TCDOE), molar tooth sign and additional skeletal abnormalities. As a parallel study, 346 probands with a phenotype consistent with JS or related ciliopathies underwent next-generation sequencing-based targeted sequencing of 120 previously described and candidate ciliopathy genes. Results We present six probands carrying nine distinct mutations (of which eight are novel) in the CEP120 gene, previously found mutated only in Jeune asphyxiating thoracic dystrophy (JATD). The CEP120-associated phenotype ranges from mild classical JS in four patients to more severe conditions in two fetuses, with overlapping features of distinct ciliopathies that include TCDOE, MKS, JATD and OFD syndromes. No obvious correlation is evident between the type or location of identified mutations and the ciliopathy phenotype. Conclusion Our findings broaden the spectrum of phenotypes caused by CEP120 mutations that account for nearly 1% of patients with JS as well as for more complex ciliopathy phenotypes. The lack of clear genotype–phenotype correlation highlights the relevance of comprehensive genetic analyses in the diagnostics of ciliopathies.


Molecular Genetics & Genomic Medicine | 2015

Mutations in CDK5RAP2 cause Seckel syndrome

Gökhan Yigit; Karen E. Brown; Hülya Kayserili; Esther Pohl; Almuth Caliebe; Diana Zahnleiter; Elisabeth Rosser; Nina Bögershausen; Zehra Oya Uyguner; Umut Altunoglu; Gudrun Nürnberg; Peter Nürnberg; Anita Rauch; Yun Li; Christian Thiel; Bernd Wollnik

Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice‐site mutations c.383+1G>C and c.4005‐9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease‐causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.


Orphanet Journal of Rare Diseases | 2015

Novel MASP1 mutations are associated with an expanded phenotype in 3MC1 syndrome

Tahir Atik; Asuman Koparir; Guney Bademci; Joseph Foster; Umut Altunoglu; Gul Yesiltepe Mutlu; Sarah Bowdin; Nursel Elcioglu; Gulsen Akay Tayfun; Sevinc Sahin Atik; Mustafa Ozen; Ferda Ozkinay; Yasemin Alanay; Hülya Kayserili; Steffen Thiel; Mustafa Tekin

Background3MC1 syndrome is a rare autosomal recessive disorder characterized by intellectual disability, short stature and distinct craniofacial, umbilical, and sacral anomalies. Five mutations in MASP1, encoding lectin complement pathway enzymes MASP-1 and MASP-3, have thus far been reported to cause 3MC1 syndrome. Only one previously reported mutation affects both MASP-1 and MASP-3, while the other mutations affect only MASP-3.MethodsWe evaluated six unrelated individuals with 3MC1 syndrome and performed Sanger sequencing for all coding exons of MASP1. We also measured complement lectin and alternative pathway activities in an affected individual’s serum.ResultsWe found two novel splice site mutations, c.1012-2A > G in one and c.891 + 1G > T in two probands, and three novel missense mutations, c.1451G > A (p.G484E), c.1657G > A (p.D553N), and c.1987G > T (p.D663Y). Missense mutations affect only MASP-3, while splice site mutations affect both MASP-1 and MASP-3. In a proband who is homozygous for c.891 + 1G > T, we detected a total lack of lectin complement pathway activity and a 2.5-fold lower alternative pathway activity. The phenotype observed in patients whose both MASP-1 and MASP-3 are affected and in those whose only MASP-3 is affected does not appear to be different. We observed structural brain abnormalities, neonatal tooth, a vascular anomaly and a solid lesion in liver as novel phenotypic features of 3MC1 syndrome.ConclusionNovel mutations and additional phenotypic features expand the genotypic and phenotypic spectrum of 3MC1 syndrome. Although patients with MASP-1 dysfunction in addition to disrupted MASP-3 have an altered complement system, their disease phenotype is not different from those having only MASP-3 dysfunction.


Nature Genetics | 2017

Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing

Rea M Lardelli; Ashleigh E. Schaffer; Veerle Rc Eggens; Maha S. Zaki; Stephanie Grainger; Shashank Sathe; Eric L. Van Nostrand; Zinayida Schlachetzki; Basak Rosti; Naiara Akizu; Eric Scott; Jennifer L Silhavy; Laura Dean Heckman; Rasim Ozgur Rosti; Esra Dikoglu; Anne Gregor; Alicia Guemez-Gamboa; Damir Musaev; Rohit Mande; Ari Widjaja; Timothy Shaw; Sebastian Markmiller; Isaac Marin-Valencia; Justin H. Davies; Linda De Meirleir; Hülya Kayserili; Umut Altunoglu; Mary Louise Freckmann; Linda Warwick; David Chitayat

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3′-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3′ genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3′-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3′-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3′ ends.


Medical Genetics | 2015

Romano-Ward sendromunda KCNQ1 geninde bir duplikasyon mutasyonu

Salih Coşkun; Yasar Yildirim; Abdullah Çim; Yahya Islamoglu; Umut Altunoglu; Z. Oya Uyguner; Osman Gokalp

Long QT syndrome (LQTS), a rare congenital cardiac condition associated with life‐threatening ventricular arrhythmias is characterized by a prolonged QT interval on electrocardiograph corrected for heart rate [corrected QT (QTc)]. LQTS has been historically categorized into the autosomal dominant Romano–Ward syndrome (RWS) and the autosomal recessive Jervell and Lange‐Nielsen syndrome (JLNS). JLNS is associated with prelingual sensorineural deafness. Both types of LQTS can be caused by mutations in channel genes (e.g. KCNQ1) responsible for potassium homeostasis in cardiac myocytes and cochlea. Autosomal dominant mutations often cause the RWS phenotype and homozygous or compound heterozygous mutations contribute to JLNS. Two First Nations communities in northern British Columbia are affected disproportionately with LQTS largely due to the V205M mutation in KCNQ1, however, the pathology and phenotypic expression for those V205M homozygous has been unknown. Here, we show that four V205M homozygous individuals have a significantly higher ‘peak’ QTc, and a more severe cardiac phenotype compared with 41 V205M heterozygous carriers and 57 first to third degree relatives without mutations. Given the lack of prelingual deafness the homozygous V205M LQTS patients present with a phenotype more typical of RWS than JLNS.

Collaboration


Dive into the Umut Altunoglu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge