Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Un Jeng Kim is active.

Publication


Featured researches published by Un Jeng Kim.


Brain Research | 2004

Injury in the spinal cord may produce cell death in the brain

Bae Hwan Lee; Kyung Hee Lee; Un Jeng Kim; Do Heum Yoon; Jin-Hun Sohn; Sang Sup Choi; Im-Gap Yi; Yong Gou Park

Functional deficits after spinal cord injury have originated not only from the direct physical damage itself, but from the secondary biochemical and pathological changes. Apoptotic cell death has been seen around the periphery of an injured site and has been known to ultimately progress to necrosis and infarction. We have initiated the present study focusing on the role of apoptosis in the secondary injury of the brain after acute spinal cord injury (SCI), and conducted a series of experiments, the study examining the morphological changes in the brain following the spinal injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to SCI model. Rats were laminectomized and SCI was induced using NYU spinal impactor at T9 segment. The behavioral test was performed. Electrophysiologically, motor evoked potentials (MEPs) were recorded. The animals were subjected to morphological study at 12, 24, 48, 72 h, and 1 week, postoperatively. Locomotor deficits were observed after SCI, and changes in the amplitudes and latencies of the MEPs were observed. The morphological changes were evidenced by terminal TUNEL staining and Calbindin-D(28K) immunohistochemistry. The TUNEL-positive cells were located at the brain motor cortex after SCI. TUNEL-positive cells were seldom found 4 h after injury. In addition, Calbindin-D28K immunoreactive neurons were observed in the motor cortex after injury. These results suggest that apoptosis may play an important role in the pathophysiology of the brain motor cortex following acute spinal cord injury and functions that were deteriorated after SCI may be related to these electrophysiological and morphological changes.


Yonsei Medical Journal | 2005

Behavioral Characteristics of a Mouse Model of Cancer Pain

Bae Hwan Lee; Jinsil Seong; Un Jeng Kim; Ran Won; Ji Young Kim

Pain is a major symptom in cancer patients, and most cancer patients with advanced or terminal cancers suffer from chronic pain related to treatment failure and/or tumor progression. In the present study, we examined the development of cancer pain in mice. Murine hepatocarcinoma cells, HCa-1, were inoculated unilaterally into the thigh or the dorsum of the foot of male C3H/HeJ mice. Four weeks after inoculation, behavioral signs were observed for mechanical allodynia, cold allodynia, and hyperalgesia using a von Frey filament, acetone, and radiant heat, respectively. Bone invasion by the tumor commenced from 7 days after inoculation of tumor cells and was evident from 14 days after inoculation. Cold allodynia but neither mechanical allodynia nor hyperalgesia was observed in mice that received an inoculation into the thigh. On the contrary, mechanical allodynia and cold allodynia, but not hyperalgesia, were developed in mice with an inoculation into the foot. Sometimes, mirror-image pain was developed in these animals. These results suggest that carcinoma cells injected into the foot of mice may develop severe chronic pain related to cancer. This animal model of pain would be useful to elucidate the mechanisms of cancer pain in humans.


The Korean Journal of Physiology and Pharmacology | 2012

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

Ji Soo Choi; Joong Woo Leem; Kyung Hee Lee; Sung-Soo Kim; Haeyoung Suh-Kim; Se Jung Jung; Un Jeng Kim; Bae Hwan Lee

The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, β-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.


Journal of Korean Medical Science | 2005

Effects of methylprednisolone on the neural conduction of the motor evoked potentials in spinal cord injured rats.

Bae Hwan Lee; Kyung Hee Lee; Do Heum Yoon; Un Jeng Kim; Yong Soon Hwang; Sang Keun Park; Joong Uhn Choi; Yong Gou Park

Methylprednisolone (MP), a glucocorticoid steroid, has an anti-inflammatory action and seems to inhibit the formation of oxygen free radicals produced during lipid peroxidation in a spinal cord injury (SCI). However, the effects of MP on the functional recovery after a SCI is controversial. The present study was conducted to determine the effects of MP on the recovery of neural conduction following a SCI. A SCI was produced using the NYU spinal cord impactor. A behavioral test was conducted to measure neurological disorders, and motor evoked potentials (MEPs) were recorded. According to the behavioral test, using BBB locomotor scaling, MP-treated animals showed improved functional recoveries when compared to salinetreated animals. MEP latencies in the MP-treated group were shortened when compared to those in the control group. Peak amplitudes of MEPs were larger in the MP-treated group than those in the control group. The thresholds of MEPs tended to be lower in the MP-treated group than those in the control group. These results suggest that MP may improve functional recovery after a SCI.


Neuroscience Letters | 2010

Neuroprotective effects of FK506 against excitotoxicity in organotypic hippocampal slice culture

Kyung Hee Lee; Ran Won; Un Jeng Kim; Ga Min Kim; Myung-Ae Chung; Jin-Hun Sohn; Bae Hwan Lee

FK506 has been originally classified as an immunosuppressant and is known to exhibit neurotrophic actions in vitro and protective effects on some neurological conditions. We investigated the neuroprotective effects of FK506 on kainic acid (KA)-induced neuronal death in organotypic hippocampal slice cultures (OHSCs). After an 18 h KA (5 microM) treatment, significantly neuronal death was detected in the CA3 region using propidium iodide staining. However, neuronal death was significantly prevented at 24 and 48 h after treatment with 0.1 microM FK506. Using cresyl violet staining, we also observed that an increased number of CA3 neurons survived in the 0.1 microM FK506 group compared to the KA only group. Based on the results of the Western blot analysis, the expressions of 5-lipoxygenase and caspase-3 were reduced 24h after 0.1 microM FK506 treatment. The levels of superoxide dismutase (SOD) and phospho-Akt expression were increased by treatment with 0.1 microM FK506. These results suggest that FK506 may have a positive role in protecting neurons against cell death in the KA injury model of OHSCs.


Frontiers in Molecular Neuroscience | 2017

Inhibition of Mammalian Target of Rapamycin (mTOR) Signaling in the Insular Cortex Alleviates Neuropathic Pain after Peripheral Nerve Injury

Minjee Kwon; Jeongsoo Han; Un Jeng Kim; Myeounghoon Cha; Sun Woo Um; Sun Joon Bai; Seong-Karp Hong; Bae Hwan Lee

Injury of peripheral nerves can trigger neuropathic pain, producing allodynia and hyperalgesia via peripheral and central sensitization. Recent studies have focused on the role of the insular cortex (IC) in neuropathic pain. Because the IC is thought to store pain-related memories, translational regulation in this structure may reveal novel targets for controlling chronic pain. Signaling via mammalian target of rapamycin (mTOR), which is known to control mRNA translation and influence synaptic plasticity, has been studied at the spinal level in neuropathic pain, but its role in the IC under these conditions remains elusive. Therefore, this study was conducted to determine the role of mTOR signaling in neuropathic pain and to assess the potential therapeutic effects of rapamycin, an inhibitor of mTORC1, in the IC of rats with neuropathic pain. Mechanical allodynia was assessed in adult male Sprague-Dawley rats after neuropathic surgery and following microinjections of rapamycin into the IC on postoperative days (PODs) 3 and 7. Optical recording was conducted to observe the neural responses of the IC to peripheral stimulation. Rapamycin reduced mechanical allodynia and downregulated the expression of postsynaptic density protein 95 (PSD95), decreased neural excitability in the IC, thereby inhibiting neuropathic pain-induced synaptic plasticity. These findings suggest that mTOR signaling in the IC may be a critical molecular mechanism modulating neuropathic pain.


Journal of Neurotrauma | 2011

Optical imaging of somatosensory evoked potentials in the rat cerebral cortex after spinal cord injury.

Kyung Hee Lee; Un Jeng Kim; Yong Gou Park; Ran Won; Hyejung Lee; Bae Hwan Lee

Optical imaging techniques have made it possible to monitor neural activity and to determine its spatiotemporal patterns. Traumatic spinal cord injury (SCI) results in both the death of gray matter neurons and the disruption of ascending and descending white matter tracts at the injury site, leading to the loss of motor and sensory functions. In this study, we monitored and compared cortical responses to the stimulation of sensory tracts in normal control and spinal-cord-injured rats using an optical imaging technique based on a voltage-sensitive dye (VSD). The sciatic nerve was stimulated with a platinum bipolar electrode, and the exposed cortical surface was stained with Di-2-ANEPEQ. Optical signals were recorded from the cerebral cortex using the MiCAM02 optical imaging system. Characteristic spatiotemporal patterns were observed in response to electrical stimulation of the sciatic nerve in normal control rats. In spinal-cord-injured rats, the optical signals were dramatically reduced compared to those of normal rats. Four weeks after SCI, however, the activation area increased in the vicinity of the focal sensory area compared to that of the rats 1 week after SCI. These results suggest that optical imaging with VSD may be useful to map functional changes after SCI.


Brain Research | 2015

Neuroprotective effects of okadaic acid following oxidative injury in organotypic hippocampal slice culture

Un Jeng Kim; Ran Won; Kyung Hee Lee

Oxidative stress produces neurotoxicity often related with various CNS disorders. A phosphatase inhibitor enhances the actions of the signaling kinases. Protein kinases mediated-action shows the neural protection in brain injury. Phosphatase inhibitor, okadaic acid (OA), may enhance the protection effect and benefit to improve neuronal plasticity in post-injury. Thus, we investigated that the protein prophatase inhibitor affects neuroprotective signaling and neuroplastic changes in hippocampus after oxidative injury. Electrophysiological and biochemical assays were used to observe changes in synaptic efficacy following electrical and/or pharmacological manipulation of synaptic function. Neuronal cell death, as assessed by propidium iodide (PI) uptake, was reduced by OA treatment (24 and 48 h) compared with KA treatment. The pattern of DCFH-DA fluorescence in hippocampal slices corresponded well with PI uptake. The phospho-AKT/AKT ratio showed that the level of phospho-AKT was significantly increased in the OA-treated group. Furthermore, the OA-treated group exhibited significantly increased expression of SOD2 compared with the KA-only group. Optical imaging revealed that KA treatment tended to delay the latency of electrical stimulation and decrease the amplitude of optical signals of synaptic activity. These results suggest that OA may protect hippocampal neurons against oxidative stress and the survived neurons may functional to synaptic plasticity changes.


Frontiers in Neuroscience | 2017

Optical Imaging of the Motor Cortex Following Antidromic Activation of the Corticospinal Tract after Spinal Cord Injury

Kyung Hee Lee; Un Jeng Kim; Se W. Park; Yong G. Park; Bae H. Lee

Spinal cord injury (SCI) disrupts neuronal networks of ascending and descending tracts at the site of injury, leading to a loss of motor function. Restoration and new circuit formation are important components of the recovery process, which involves collateral sprouting of injured and uninjured fibers. The present study was conducted to determine cortical responses to antidromic stimulation of the corticospinal tracts, to compare changes in the reorganization of neural pathways within normal and spinal cord-injured rats, and to elucidate differences in spatiotemporal activity patterns of the natural progression and reorganization of neural pathways in normal and SCI animals using optical imaging. Optical signals were recorded from the motor cortex in response to electrical stimulation of the ventral horn of the L1 spinal cord. Motor evoked potentials (MEPs) were evaluated to demonstrate endogenous recovery of physiological functions after SCI. A significantly shorter N1 peak latency and broader activation in the MEP optical recordings were observed at 4 weeks after SCI, compared to 1 week after SCI. Spatiotemporal patterns in the cerebral cortex differed depending on functional recovery. In the present study, optical imaging was found to be useful in revealing functional changes and may reflect conditions of reorganization and/or changes in surviving neurons after SCI.


Biological Rhythm Research | 2008

Responses of the hypothalamic paraventricular neurons to light stimulation with different wavelengths in the rat

Bae Hwan Lee; Se Jung Jung; Un Jeng Kim; Jin Hun Sohn; Shigeki Watanuki; Akira Yasukouchi; Takeshi Morita

During exposure to light with different spectral compositions, the non-visual neural system in the brain gives rise to altered various physiological aspects that are not caused by the well-known primary visual pathway. This study has been designed to investigate non-visual information processing that affects the biological rhythms in humans by studying the properties of paraventricular neurons in Sprague-Dawley rats under urethane anesthesia. The responses of paraventricular nucleus neurons by stimulation with different wavelengths of light were recorded. It turned out that neural responses were most sensitive to 550 nm wavelength light. This result suggests that a non-visual system in the hypothalamus including the paraventricular nucleus responds to light stimuli to control biological rhythms or autonomic functions.

Collaboration


Dive into the Un Jeng Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Hun Sohn

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge