Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Un Sil Jeon is active.

Publication


Featured researches published by Un Sil Jeon.


Journal of The American Society of Nephrology | 2006

Tonicity-Responsive Enhancer Binding Protein Is an Essential Regulator of Aquaporin-2 Expression in Renal Collecting Duct Principal Cells

Udo Hasler; Un Sil Jeon; Jeong-Ah Kim; David Mordasini; H. Moo Kwon; Eric Féraille; Pierre-Yves Martin

Tonicity-responsive enhancer binding protein (TonEBP) plays a key role in protecting renal cells from hypertonic stress by stimulating transcription of specific genes. Under hypertonic conditions, TonEBP activity is enhanced via increased nuclear translocation, transactivation, and abundance. It was reported previously that hypertonicity exerted a dual, time-dependent effect on vasopressin-inducible aquaporin-2 (AQP2) expression in immortalized mouse collecting duct principal cells (mpkCCDcl4). Whereas AQP2 abundance decreased after 3 h of hyperosmotic challenge, it increased after 24 h of hypertonic challenge. This study investigated the role that TonEBP may play in these events by subjecting mpkCCDcl4 cells to 3 or 24 h of hypertonic challenge. Hypertonic challenge increased TonEBP mRNA and protein content and enhanced TonEBP activity as illustrated by both increased TonEBP-dependent luciferase activity and mRNA expression of several genes that are targeted by TonEBP. Irrespective of the absence or presence of vasopressin, decreased TonEBP activity in cells that were transfected with either TonEBP small interfering RNA or an inhibitory form of TonEBP strongly reduced AQP2 mRNA and protein content under iso-osmotic conditions and blunted the increase of AQP2 abundance that was induced after 24 h of hypertonic challenge. Conversely, decreased TonEBP activity did not significantly alter reduced expression of AQP2 mRNA that was induced by 3 h of hypertonic challenge. Mutation of a TonE enhancer element located 489 bp upstream of the AQP2 transcriptional start site abolished the hypertonicity-induced increase of luciferase activity in cells that expressed AQP2 promoter-luciferase plasmid constructs, indicating that TonEBP influences AQP2 transcriptional activity at least partially by acting directly on the AQP2 promoter. These findings demonstrate that in collecting duct principal cells, TonEBP plays a central role in regulating AQP2 expression by enhancing AQP2 gene transcription.


Acta Physiologica | 2006

How tonicity regulates genes: story of TonEBP transcriptional activator.

Un Sil Jeon; Jeong-Ah Kim; Mee Rie Sheen; H. M. Kwon

TonEBP stimulates genes whose products drive cellular accumulation of organic osmolytes and HSP70, which protect cells from the deleterious effects of hypertonicity and urea, respectively. Mice deficient in the TonEBP gene display severe atrophy of the renal medulla because cells failed to adapt to the hyperosmolality. Emerging data suggest that TonEBP plays a key role in the urinary concentrating mechanism by stimulating the UT‐A urea transporters and possibly AQP2 water channel. Thus, TonEBP is an essential regulator in the urinary concentrating mechanism. Studies on structural basis of TonEBP function have revealed the structure of the DNA binding domain, and defined the transactivation domains. Molecular mechanisms underlying the nucleocytoplasmic trafficking, transactivation, and phosphorylation in response to changes in tonicity need to be understood in molecular detail. Such knowledge is needed for the identification of the sensor that detects changes in ambient tonicity and signals to TonEBP.


Journal of Clinical Investigation | 2009

Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice

Hyun-Woo Jeong; Un Sil Jeon; Bon-Kyoung Koo; Wan-Young Kim; Sun-Kyoung Im; Juhee Shin; Yunje Cho; Jin Kim; Young-Yun Kong

The heterogeneous cellular composition of the mammalian renal collecting duct enables regulation of fluid, electrolytes, and acid-base homeostasis, but the molecular mechanism of its development has yet to be elucidated. The Notch signaling pathway is involved in cell fate determination and has been implicated in proximal-distal patterning in the mammalian kidney. To investigate the role of Notch signaling in renal collecting duct development, we generated mice in which Mind bomb-1 (Mib1), an E3 ubiquitin ligase required for the initiation of Notch signaling, was specifically inactivated in the ureteric bud of the developing kidney. Mice lacking Mib1 in the renal collecting duct displayed increased urinary production, decreased urinary osmolality, progressive hydronephrosis, sodium wasting, and a severe urinary concentrating defect manifested as nephrogenic diabetes insipidus. Histological analysis revealed a diminished number of principal cells and corresponding increase in the number of intercalated cells. Transgenic overexpression of Notch intracellular domain reversed the altered cellular composition of mutant renal collecting duct, with principal cells occupying the entire region. Our data demonstrate that Notch signaling is required for the development of the mammalian renal collecting duct and principal cell differentiation and indicate that pathway dysregulation may contribute to distal renal tubular disorders.


Respiration | 2006

Comparison of Experimental Lung Injury from Acute Renal Failure with Injury due to Sepsis

Do Jin Kim; Soo Hyun Park; Mee Rie Sheen; Un Sil Jeon; Seung Whan Kim; Eun Suk Koh; Seung Kyoon Woo

Background: Acute renal failure (ARF) and acute respiratory distress syndrome (ARDS) coexist frequently, and the mortality rate of this combination is very high. It is well established that cytokines and chemokines play a major role in the pathogenesis of ARDS. In addition, heat shock proteins (HSPs) have been shown to be protective against ARDS. Objectives: The purpose of this study was to investigate the pathophysiology of ARDS in two different conditions, sepsis and ARF. Methods: We examined five different rat animal models including sham-operated control, sepsis and three ARF models induced by renal ischemia/reperfusion injury, bilateral nephrectomy or bilateral ligation of renal pedicles. We analyzed pulmonary histology, pulmonary vascular permeability, cellular infiltration, and expression of cytokines, chemokines and HSPs. Results: Like sepsis, the three forms of ARF led to ARDS, as manifested by increased pulmonary vascular permeability and histological changes consistent with ARDS. On the other hand, ARF and sepsis differed in that ARF was associated with markedly lower levels of pulmonary cellular infiltration. Furthermore, while pulmonary expression of tumor necrosis factor-α increased in sepsis, cytokine-induced neutrophil chemoattractant 2 increased in nephrectomized rats indicating that different inflammatory mediators were involved in the injury mechanism. Finally, pulmonary expression of multiple HSPs including HSP27-1, HSP70, HSP70-4, HSP70-8 and HSP90 was significantly different between the two conditions. Conclusions: We conclude that the pathophysiology of ARDS following ARF is distinct from that in sepsis. ARF-induced ARDS is characterized by a low level of cellular infiltration, induction of cytokine-induced neutrophil chemoattractant 2, and a discrete expression profile of HSPs.


Journal of The American Society of Nephrology | 2011

Sulfatide-Reactive Natural Killer T Cells Abrogate Ischemia-Reperfusion Injury

Seung Hee Yang; Jung Pyo Lee; Hye Ryoun Jang; Ran-hui Cha; Seung Seok Han; Un Sil Jeon; Dong Ki Kim; Junghan Song; Dong-Sup Lee; Yon Su Kim

There is a significant immune response to ischemia-reperfusion injury (IRI), but the role of immunomodulatory natural killer T (NKT) cell subtypes is not well understood. Here, we compared the severity of IRI in mice deficient in type I/II NKT cells (CD1d(-/-)) or type I NKT cells (Jα18(-/-)). The absence of NKT cells, especially type II NKT cells, accentuated the severity of renal injury, whereas repletion of NKT cells attenuated injury. Adoptively transferred NKT cells trafficked into the tubulointerstitium, which is the primary area of injury. Sulfatide-induced activation of type II NKT cells protected kidneys from IRI, but inhibition of NKT cell recruitment enhanced injury. In co-culture experiments, sulfatide-induced activation of NKT cells from either mice or humans attenuated apoptosis of renal tubular cells after transient hypoxia via hypoxia-inducible factor (HIF)-1α and IL-10 pathways. Renal tissue of patients with acute tubular necrosis (ATN) frequently contained NKT cells, and the number of these cells tended to negatively correlate with ATN severity. In summary, sulfatide-reactive type II NKT cells are renoprotective in IRI, suggesting that pharmacologic modulation of NKT cells may protect against ischemic injury.


Journal of Biological Chemistry | 2008

NF-κB Modulates Aquaporin-2 Transcription in Renal Collecting Duct Principal Cells

Udo Hasler; Valérie Leroy; Un Sil Jeon; Richard Bouley; Mitko Dimitrov; Jeong-Ah Kim; Dennis Brown; H. Moo Kwon; Pierre-Yves Martin; Eric Féraille

Renal tubulo-interstitial inflammation is frequently associated with polyuria and urine concentration defects. This led us to investigate the effects of the major pro-inflammatory nuclear factor κB (NF-κB) pathway on aquaporin 2 (AQP2) expression by the collecting duct. Using immortalized collecting duct principal cells (mpkCCDcl4), we found that, acting independently of vasopressin, activation of NF-κBby lipopolysaccharide (LPS) decreased AQP2 mRNA and protein levels in a time- and dose-dependent manner but did not decrease AQP2 mRNA stability. Consistently, constitutively active IκB kinase β decreased AQP2 expression. The LPS-induced decrease in AQP2 mRNA levels was confirmed in rat kidney slices and was reproduced both under conditions of elevated cAMP concentration and V2 receptor antagonism. Computer analysis of the AQP2 promoter revealed two putative κB elements. Mutation of either κB element abolished the LPS-induced decrease of luciferase activity in cells expressing AQP2 promoter-luciferase plasmid constructs. Chromatin immunoprecipitation revealed that LPS challenge decreased p65, increased p50 and p52, and had no effect on RelB and c-Rel binding to κB elements of the AQP2 promoter. RNA-mediated interference silencing of p65, p50, and p52 confirmed controlled AQP2 transcription by these NF-κB subunits. We additionally found that hypertonicity activated NF-κB in mpkCCDcl4 cells, an effect that may counteract the Tonicity-responsive enhancer binding protein (TonEBP)-dependent increase in AQP2 gene transcription. Taken together, these findings indicate that NF-κB is an important physiological regulator of AQP2 transcription.


Journal of The American Society of Nephrology | 2002

Secretory-Defect Distal Renal Tubular Acidosis Is Associated with Transporter Defect in H+-ATPase and Anion Exchanger-1

Jin Suk Han; Gheun-Ho Kim; Jin Kim; Un Sil Jeon; Kwon Wook Joo; Ki Young Na; Curie Ahn; Suhnggwon Kim; Sang Eun Lee; Jung Sang Lee

Recent progress in molecular physiology has permitted us to understand pathophysiology of various channelopathies at a molecular level. The secretion of H(+) from alpha-intercalated cells is mediated by apical plasma membrane H(+)-ATPase and basolateral plasma membrane anion exchanger-1 (AE1). Studies have demonstrated the lack of H(+)-ATPase immunostaining in the intercalated cells in a few patients with distal renal tubular acidosis (dRTA). Mutations in H(+)-ATPase and AE1 gene have recently been reported to cause dRTA. This study extends the investigation of the role of transporter defect in dRTA by using immunohistochemical methods. Eleven patients with hyperchloremic metabolic acidosis were diagnosed functionally to have secretory-defect dRTA: urine pH >5.5 during acidemia, normokalemia or hypokalemia, and urine-to-blood pCO(2) <25 mmHg during bicarbonaturia. Renal biopsy tissue was obtained from each patient, and immunohistochemistry was carried out using antibodies to H(+)-ATPase and AE1. For comparison, renal tissues from the patients who had no evidences of distal acidification defect by functional studies were used: four with glomerulopathy or tubulointerstitial nephritis (disease controls) and three from nephrectomized kidneys for renal cell carcinoma (normal controls). The H(+)-ATPase immunoreactivity in alpha-intercalated cells was almost absent in all of the 11 patients with secretory-defect dRTA. In addition, 7 of 11 patients with secretory-defect dRTA were accompanied by negative AE1 immunoreactivity. In both disease controls and normal controls, the immunoreactivity of H(+)-ATPase and AE1 was strong in alpha-intercalated cells. In conclusion, significant defect in acid-base transporters is the major cause of secretory-defect dRTA.


Journal of The American Society of Nephrology | 2007

Downregulation of Renal Sodium Transporters and Tonicity-Responsive Enhancer Binding Protein by Long-Term Treatment with Cyclosporin A

Sun Woo Lim; Kyung Ohk Ahn; Mee Rie Sheen; Un Sil Jeon; Jin Kim; Chul Woo Yang; H. Moo Kwon

Tonicity-responsive enhancer binding protein (TonEBP) is a transcriptional activator that is regulated by ambient tonicity. TonEBP protects the renal medulla from the deleterious effects of hyperosmolality and regulates the urinary concentration by stimulating aquaporin-2 and urea transporters. The therapeutic use of cyclosporin A (CsA) is limited by nephrotoxicity that is manifested by reduced GFR, fibrosis, and tubular defects, including reduced urinary concentration. It was reported recently that long-term CsA treatment was associated with decreased renal expression of TonEBP target genes, including aquaporin-2, urea transporter, and aldose reductase. This study tested the hypothesis that long-term CsA treatment reduces the salinity/tonicity of the renal medullary interstitium as a result of inhibition of active sodium transporters, leading to downregulation of TonEBP. CsA treatment for 7 d did not affect TonEBP or renal function. Whereas expression of sodium transporters was altered, the medullary tonicity seemed unchanged. Conversely, 28 d of CsA treatment led to downregulation of TonEBP and overt nephrotoxicity. The downregulation of TonEBP involved reduced expression, cytoplasmic shift, and reduced transcription of its target genes. This was associated with reduced expression of active sodium transporters-sodium/potassium/chloride transporter type 2 (NKCC2), sodium/chloride transporter, and Na(+),K(+)-ATPase-along with increased sodium excretion and reduced urinary concentration. Infusion of vasopressin restored the expression of NKCC2 in the outer medulla as well as the expression and the activity of TonEBP. It is concluded that the downregulation of TonEBP in the setting of long-term CsA administration is secondary to the reduced tonicity of the renal medullary interstitium.


Nephron Experimental Nephrology | 2003

Oxytocin induces apical and basolateral redistribution of aquaporin-2 in rat kidney.

Un Sil Jeon; Kwon Wook Joo; Ki Young Na; Yon Su Kim; Jung Sang Lee; Jin Kim; Gheun-Ho Kim; Søren Nielsen; Mark A. Knepper; Jin Suk Han

The aquaporin-2 (AQP2) water channel is mainly located in the apical plasma membrane of collecting duct epithelial cells, but there has been some evidence of a moderate amount of basolateral localization of AQP2 at least in the inner medullary collecting duct (IMCD). Previous in vitro microperfusion studies showed that oxytocin has an antidiuretic action, most likely mediated by the vasopressin V2 receptor (V2R) in rat IMCD. By using immunohistochemistry in kidneys from male Sprague-Dawley rats, we observed acute effects of oxytocin on AQP2 localization which were prevented by a V2R antagonist. After intraperitoneal administration of oxytocin (10 U), immunohistochemistry of IMCD revealed that AQP2 was shifted from diffuse cytoplasmic localization in controls to the apical and basolateral membrane domains in oxytocin-treated rats. This pattern of AQP2 redistribution was noted in connecting tubule, cortical collecting duct and outer medullary collecting duct as well as in IMCD, although the tendency to basolateral localization was somewhat less. The pretreatment using a V2R antagonist blocked redistribution of AQP2 in response to oxytocin. We conclude that oxytocin induces a V2R-mediated redistribution of AQP2-containing cytoplasmic vesicles to both apical and basolateral plasma membrane domains in rat kidney. Oxytocin may be one of the factors that accounts for vasopressin-independent AQP2 targeting in the kidney.


Kidney International | 2009

Interstitial tonicity controls TonEBP expression in the renal medulla

Mee Rie Sheen; Jeong-Ah Kim; Sun W. Lim; Ju-Y. Jung; Ki-H. Han; Un Sil Jeon; Soo-H. Park; Jin Kim; H. Moo Kwon

Cells in the hyperosmotic kidney medulla, express a transcriptional activator termed tonicity responsive enhancer binding protein (TonEBP). Genes targeted by TonEBP protect kidney cells from the deleterious effects of hyperosmolality by inducing the expression of organic osmolytes and molecular chaperones, and other genes that mediate urine concentration such as aquaporin-2 and urea transporters. We tested here the effect of hypertonicity and hyperosmotic salt in the renal medullary interstitium on the expression TonEBP. When massive water diuresis was induced in rats the medullary sodium concentrations did not change, neither did TonEBP expression. In these animals the medullary tonicity was unchanged despite the production of dilute urine. On the other hand, treatment with the loop diurectic furosemide resulted in a dose-dependent decrease in the medullary sodium concentration causing a reduction in interstitial tonicity. Here, TonEBP expression was blunted in the outer and inner medulla which was due, in part, to decreased mRNA abundance. As expected, the expression of TonEBP target genes in the renal medulla also decreased in response to furosemide. Hence TonEBP expression in the renal medulla is stimulated by interstitial hypertonicity.

Collaboration


Dive into the Un Sil Jeon's collaboration.

Top Co-Authors

Avatar

Jin Suk Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jung Sang Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kwon Wook Joo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curie Ahn

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jin Kim

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Ki Young Na

Seoul National University Bundang Hospital

View shared research outputs
Top Co-Authors

Avatar

Suhnggwon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yon Su Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

H. Moo Kwon

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge