Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Una Ryan is active.

Publication


Featured researches published by Una Ryan.


Clinical Microbiology Reviews | 2004

Cryptosporidium taxonomy: recent advances and implications for public health.

Lihua Xiao; Ronald Fayer; Una Ryan; Steve J. Upton

SUMMARY There has been an explosion of descriptions of new species of Cryptosporidium during the last two decades. This has been accompanied by confusion regarding the criteria for species designation, largely because of the lack of distinct morphologic differences and strict host specificity among Cryptosporidium spp. A review of the biologic species concept, the International Code of Zoological Nomenclature (ICZN), and current practices for Cryptosporidium species designation calls for the establishment of guidelines for naming Cryptosporidium species. All reports of new Cryptosporidium species should include at least four basic components: oocyst morphology, natural host specificity, genetic characterizations, and compliance with the ICZN. Altogether, 13 Cryptosporidium spp. are currently recognized: C. muris, C. andersoni, C. parvum, C. hominis, C. wrairi, C. felis, and C. cannis in mammals; C. baïleyi, C. meleagridis, and C. galli in birds; C. serpentis and C. saurophilum in reptiles; and C. molnari in fish. With the establishment of a framework for naming Cryptosporidium species and the availability of new taxonomic tools, there should be less confusion associated with the taxonomy of the genus Cryptosporidium. The clarification of Cryptosporidium taxonomy is also useful for understanding the biology of Cryptosporidium spp., assessing the public health significance of Cryptosporidium spp. in animals and the environment, characterizing transmission dynamics, and tracking infection and contamination sources.


International Journal for Parasitology | 2002

Host adaptation and host-parasite co-evolution in Cryptosporidium: implications for taxonomy and public health.

Lihua Xiao; Irshad M. Sulaiman; Una Ryan; Ling Zhou; Edward R. Atwill; Monica Lee Tischler; Xichen Zhang; Ronald Fayer; Altaf A. Lal

To assess the genetic diversity and evolution of Cryptosporidium parasites, the partial ssrRNA, actin, and 70kDa heat shock protein (HSP70) genes of 15 new Cryptosporidium parasites were sequenced. Sequence data were analysed together with those previously obtained from other Cryptosporidium parasites (10 Cryptosporidium spp. and eight Cryptosporidium genotypes). Results of this multi-locus genetic characterisation indicate that host adaptation is a general phenomenon in the genus Cryptosporidium, because specific genotypes were usually associated with specific groups of animals. On the other hand, host-parasite co-evolution is also common in Cryptosporidium, as closely related hosts usually had related Cryptosporidium parasites. Results of phylogenetic analyses suggest that the Cryptosporidium parvum bovine genotype and Cryptosporidium meleagridis were originally parasites of rodents and mammals, respectively, but have subsequently expanded their host ranges to include humans. Understanding the evolution of Cryptosporidium species is important not only for clarification of the taxonomy of the parasites but also for assessment of the public health significance of Cryptosporidium parasites from animals.


Applied and Environmental Microbiology | 2003

Identification of Novel Cryptosporidium Genotypes from the Czech Republic

Una Ryan; Lihua Xiao; Carolyn Read; Ling Zhou; Altaf A. Lal; Ivan Pavlasek

ABSTRACT Isolates of Cryptosporidium from the Czech Republic were characterized from a variety of different hosts using sequence and phylogenetic analysis of the 18S ribosomal DNA and the heat-shock (HSP-70) gene. Analysis expanded the host range of accepted species and identified several novel genotypes, including horse, Eurasian woodcock, rabbit, and cervid genotypes.


Current Opinion in Infectious Diseases | 2004

Cryptosporidiosis: an update in molecular epidemiology

Lihua Xiao; Una Ryan

Purpose of reviewMolecular tools have been developed to detect and differentiate Cryptosporidium at the species/genotype and subtype levels. These tools have been increasingly used in the characterization of the transmission of Cryptosporidium spp. This review addresses the most recent developments in molecular epidemiology of cryptosporidiosis. Recent findingsThe recent development of subtyping tools has led to better understanding of the population genetics and transmission of Cryptosporidium in humans. The population structure of C. parvum and C. hominis is apparently more complicated than previously suggested, with the likely existence of both clonal and panmictic populations. Thus, the transmission of C. parvum (genotype II) in humans is shown to be different in different areas, with zoonotic transmission important in certain places and anthroponotic transmission in others. The use of molecular tools has also led to the identification of geographic and temporal differences in the transmission of C. parvum and C. hominis, and better appreciation of the public health importance of other Cryptosporidium species/genotypes and the frequency of infections with mixed genotypes or subtypes. SummaryFactors involved in the transmission of human cryptosporidiosis are difficult to examine using conventional methods. The use of molecular tools has been helpful in the assessment of the zoonotic potential of various Cryptosporidium spp. and sources of human infections, and has started to play a significant role in the characterization of transmission dynamic in endemic and epidemic areas.


Parasitology | 2014

Cryptosporidium species in humans and animals: current understanding and research needs.

Una Ryan; Ronald Fayer; Lihua Xiao

Cryptosporidium is increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20 Cryptosporidium species and genotypes that have been reported in humans, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with several Cryptosporidium species or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission of Cryptosporidium species, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for many Cryptosporidium species of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity of Cryptosporidium species and impact of climate change on the transmission of Cryptosporidium.


Applied and Environmental Microbiology | 2005

Sheep may not be an important zoonotic reservoir for Cryptosporidium and Giardia parasites.

Una Ryan; Caroline Bath; I.D. Robertson; Carolyn Read; Aileen Elliot; Linda M. McInnes; Rebecca J. Traub; Brown Besier

ABSTRACT Little is known of the prevalence of Cryptosporidium and Giardia parasites in sheep and the genotypes that they harbor, although potentially sheep may contribute significantly to contamination of watersheds. In the present study, conducted in Western Australia, a total of 1,647 sheep fecal samples were screened for the presence of Cryptosporidium and Giardia spp. using microscopy, and a subset (n = 500) were screened by PCR and genotyped. Analysis revealed that although both parasites were detected in a high proportion of samples by PCR (44% and 26% for Giardia and Cryptosporidium spp., respectively), with the exception of one Cryptosporidium hominis isolate, the majority of isolates genotyped are not commonly found in humans. These results suggest that the public health risk of sheep-derived Cryptosporidium and Giardia spp. in catchment areas and effluent may be overestimated and warrant further investigation.


Applied and Environmental Microbiology | 2006

Identification of Novel Cryptosporidium Genotypes from Avian Hosts

Josephine Ng; Ivan Pavlasek; Una Ryan

ABSTRACT A total of 430 avian-derived fecal specimens were randomly collected from selected Western Australian commercial aviaries, poultry farms, hatcheries, wildlife parks, and the Perth Zoo and screened for the presence of Cryptosporidium by PCR. Of these, 27 Cryptosporidium-positive isolates were detected, characterized, and compared with 11 avian-derived isolates from the Czech Republic at the 18S rRNA and actin gene loci. Sequence and phylogenetic analysis identified four genetically distinct genotypes, avian genotypes I to IV, from various avian hosts. In addition, the host range for Cryptosporidium galli was extended. Cryptosporidium muris and Cryptosporidium andersoni were also identified in a tawny frogmouth and a quail-crested wood partridge, respectively.


Journal of Parasitology | 2004

CRYPTOSPORIDIUM SUIS N. SP. (APICOMPLEXA: CRYPTOSPORIDIIDAE) IN PIGS (SUS SCROFA)

Una Ryan; Paul Monis; H. L. Enemark; Irshad M. Sulaiman; Bimba Samarasinghe; Carolyn Read; Ross Buddle; I.D. Robertson; Ling Zhou; R.C.A. Thompson; Lihua Xiao

Molecular and biological characteristics of a new species of Cryptosporidium from the feces of pigs (Sus scrofa) is described. Oocysts are structurally indistinguishable from those of Cryptosporidium parvum; they are passed fully sporulated, lack sporocysts, and measure 4.9–4.4 μm (mean = 4.6 μm) × 4.0–4.3 μm (mean = 4.2 μm); length to width ratio 1.1 (n = 50). Cryptosporidium suis is not transmissible to nude mice and is poorly infectious for cattle. Molecular and phylogenetic analyses at the 18S ribosomal RNA, heat shock protein 70, and actin gene loci demonstrate C. suis to be genetically distinct from all known species and genotypes of Cryptosporidium, and thus is named as Cryptosporidium suis.


Emerging Infectious Diseases | 2009

Cryptosporidium sp. rabbit genotype, a newly identified human pathogen.

Rachel M. Chalmers; Guy Robinson; Kristin Elwin; Stephen J. Hadfield; Lihua Xiao; Una Ryan; Deborah Modha; Catherine Mallaghan

Most human cases of cryptosporidiosis are caused by Cryptosporidium parvum or C. hominis, but pathogenicity of some unusual Cryptosporidium species/genotypes is uncertain (1). In July 2008, an outbreak caused by Cryptosporidium rabbit genotype was linked to consumption of tap water in Northamptonshire, England (2). On June 23 and 24, Cryptosporidium oocysts were detected by operational monitoring of treated water at a surface water treatment works. A precautionary boil-water notice was implemented on June 25.


Applied and Environmental Microbiology | 2004

Genetic diversity of Cryptosporidium spp. in captive reptiles.

Lihua Xiao; Una Ryan; Thaddeus K. Graczyk; Josef Limor; Lixia Li; Mark Kombert; Randy Junge; Irshad M. Sulaiman; Ling Zhou; Michael J. Arrowood; Břetislav Koudela; David Modrý; Altaf A. Lal

ABSTRACT The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium. Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards.

Collaboration


Dive into the Una Ryan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihua Xiao

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Monis

South Australian Water Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge