Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Upakarasamy Lourderaj is active.

Publication


Featured researches published by Upakarasamy Lourderaj.


Science | 2008

Imaging nucleophilic substitution dynamics.

J. Mikosch; S. Trippel; C. Eichhorn; Rico Otto; Upakarasamy Lourderaj; Jiaxu Zhang; William L. Hase; M. Weidemüller

Anion-molecule nucleophilic substitution (SN2) reactions are known for their rich reaction dynamics, caused by a complex potential energy surface with a submerged barrier and by weak coupling of the relevant rotational-vibrational quantum states. The dynamics of the SN2 reaction of Cl– + CH3I were uncovered in detail by using crossed molecular beam imaging. As a function of the collision energy, the transition from a complex-mediated reaction mechanism to direct backward scattering of the I– product was observed experimentally. Chemical dynamics calculations were performed that explain the observed energy transfer and reveal an indirect roundabout reaction mechanism involving CH3 rotation.


International Reviews in Physical Chemistry | 2008

Classical trajectory simulations of post-transition state dynamics

Upakarasamy Lourderaj; Kyoyeon Park; William L. Hase

Classical chemical dynamics simulations of post-transition state dynamics are reviewed. Most of the simulations involve direct dynamics for which the potential energy and gradient are obtained directly from an electronic structure theory. The chemical reaction attributes and chemical systems presented are product energy partitioning for Cl− ··· CH3Br → ClCH3 + Br− and C2H5F → C2H4 + HF dissociation, non-RRKM dynamics for cyclopropane stereomutation and the Cl− ··· CH3Cl complexes mediating the Cl− + CH3Cl SN2 nucleophilic substitution reaction, and non-IRC dynamics for the OH− + CH3F and F− + CH3OOH chemical reactions. These studies illustrate the important role of chemical dynamics simulations in understanding atomic-level reaction dynamics and interpreting experiments. They also show that widely used paradigms and model theories for interpreting reaction kinetics and dynamics are often inaccurate and are not applicable.


Journal of Chemical Physics | 2013

Simulation studies of the Cl− + CH3I SN2 nucleophilic substitution reaction: Comparison with ion imaging experiments

Jiaxu Zhang; Upakarasamy Lourderaj; Rui Sun; Jochen Mikosch; William L. Hase

In the previous work of Mikosch et al. [Science 319, 183 (2008)], ion imaging experiments were used to study the Cl(-) + CH3I → ClCH3 + I(-) reaction at collision energies E(rel) of 0.39, 0.76, 1.07, and 1.9 eV. For the work reported here MP2(fc)/ECP/d direct dynamics simulations were performed to obtain an atomistic understanding of the experiments. There is good agreement with the experimental product energy and scattering angle distributions for the highest three E(rel), and at these energies 80% or more of the reaction is direct, primarily occurring by a rebound mechanism with backward scattering. At 0.76 eV there is a small indirect component, with isotropic scattering, involving formation of the pre- and post-reaction complexes. All of the reaction is direct at 1.07 eV. Increasing E(rel) to 1.9 eV opens up a new indirect pathway, the roundabout mechanism. The product energy is primarily partitioned into relative translation for the direct reactions, but to CH3Cl internal energy for the indirect reactions. The roundabout mechanism transfers substantial energy to CH3Cl rotation. At E(rel) = 0.39 eV both the experimental product energy partitioning and scattering are statistical, suggesting the reaction is primarily indirect with formation of the pre- and post-reaction complexes. However, neither MP2 nor BhandH/ECP/d simulations agree with experiment and, instead, give reaction dominated by direct processes as found for the higher collision energies. Decreasing the simulation E(rel) to 0.20 eV results in product energy partitioning and scattering which agree with the 0.39 eV experiment. The sharp transition from a dominant direct to indirect reaction as E(rel) is lowered from 0.39 to 0.20 eV is striking. The lack of agreement between the simulations and experiment for E(rel) = 0.39 eV may result from a distribution of collision energies in the experiment and/or a shortcoming in both the MP2 and BhandH simulations. Increasing the reactant rotational temperature from 75 to 300 K for the 1.9 eV collisions, results in more rotational energy in the CH3Cl product and a larger fraction of roundabout trajectories. Even though a ClCH3-I(-) post-reaction complex is not formed and the mechanistic dynamics are not statistical, the roundabout mechanism gives product energy partitioning in approximate agreement with phase space theory.


Journal of Chemical Physics | 2007

Direct dynamics simulations using Hessian-based predictor-corrector integration algorithms

Upakarasamy Lourderaj; Kihyung Song; Theresa L. Windus; Yu Zhuang; William L. Hase

In previous research [J. Chem. Phys. 111, 3800 (1999)] a Hessian-based integration algorithm was derived for performing direct dynamics simulations. In the work presented here, improvements to this algorithm are described. The algorithm has a predictor step based on a local second-order Taylor expansion of the potential in Cartesian coordinates, within a trust radius, and a fifth-order correction to this predicted trajectory. The current algorithm determines the predicted trajectory in Cartesian coordinates, instead of the instantaneous normal mode coordinates used previously, to ensure angular momentum conservation. For the previous algorithm the corrected step was evaluated in rotated Cartesian coordinates. Since the local potential expanded in Cartesian coordinates is not invariant to rotation, the constants of motion are not necessarily conserved during the corrector step. An approximate correction to this shortcoming was made by projecting translation and rotation out of the rotated coordinates. For the current algorithm unrotated Cartesian coordinates are used for the corrected step to assure the constants of motion are conserved. An algorithm is proposed for updating the trust radius to enhance the accuracy and efficiency of the numerical integration. This modified Hessian-based integration algorithm, with its new components, has been implemented into the VENUS/NWChem software package and compared with the velocity-Verlet algorithm for the H(2)CO-->H(2)+CO, O(3)+C(3)H(6), and F(-)+CH(3)OOH chemical reactions.


Journal of Physical Chemistry A | 2009

Cyclohexane Isomerization. Unimolecular Dynamics of the Twist-Boat Intermediate†

Khatuna Kakhiani; Upakarasamy Lourderaj; Wenfang Hu; David M. Birney; William L. Hase

Direct dynamics simulations were performed at the HF/6-31G level of theory to investigate the intramolecular and unimolecuar dynamics of the twist-boat (TB) intermediate on the cyclohexane potential energy surface (PES). Additional calculations were performed at the MP2/aug-cc-pVDZ level of theory to further characterize the PESs stationary points. The trajectories were initiated at the C(1) and C(2) half-chair transition states (TSs) connecting a chair conformer with a TB intermediate, via an intrinsic reaction coordinate (IRC). Energy was added in accord with a microcanonical ensemble at the average energy for experiments at 263 K. Important nontransition state theory (TST), non-IRC, and non-RRKM dynamics were observed in the simulations. Trajectories initially directed toward the chair conformer had a high probability of recrossing the TS, with approximately 30% forming a TB intermediate instead of accessing the potential energy well for the conformer. The TB intermediate initially formed was not necessarily the one connected to the TS via the IRC. Of the trajectories initiated at the C(2) half-chair TS and initially directed toward the chair conformer, 35% formed a TB intermediate instead of the chair conformer. Also, of the trajectories forming a TB intermediate, only 16% formed the TB intermediate connected with the C(2) TS via the IRC. Up to eight consecutive TB --> TB isomerizations were followed, and non-RRKM behavior was observed in their dynamics. A TB can isomerize to two different TBs, one by a clockwise rotation of C-C-C-C dihedral angles and the other by a counterclockwise rotation. In contrast to RRKM theory, which predicts equivalent probabilities for these rotations, the trajectory dynamics show they are not equivalent and depend on whether the C(1) or C(2) half-chair TS is initially excited. Non-RRKM dynamics is also observed in the isomerization of the TB intermediates to the chair conformers. RRKM theory assumes equivalent probabilities for isomerizing to the two chair conformers. In contrast, for the first and following TB intermediate formed, there is a preference to isomerize to the chair conformer connected to the TS at which the trajectories were initiated. For the first TB intermediate formed, approximately 30% of the isomerization is to a chair conformer, but this fraction decreases for the later formed TB intermediates and becomes approximately 10% for the eighth consecutive TB intermediate formed.


Journal of Physical Chemistry A | 2009

Quantum Chemical Calculations of the Cl- + CH3I → CH3Cl + I- Potential Energy Surface

Jiaxu Zhang; Upakarasamy Lourderaj; Srirangam V. Addepalli; Wibe A. de Jong; William L. Hase

Electronic structure theory calculations, using MP2 theory and the DFT functionals OPBE, OLYP, HCTH407, BhandH, and B97-1, were performed to characterize the structures, vibrational frequencies, and energies for stationary points on the Cl(-) + CH(3)I --> ClCH(3) + I(-) potential energy surface. The aug-cc-pVDZ and aug-cc-pVTZ basis sets, with an effective core potential (ECP) for iodine, were employed. Single-point CCSD(T) calculations were performed to obtain the complete basis set (CBS) limit for the reaction energies. DFT was found to give significantly longer halide ion/carbon atom bond lengths for the ion-dipole complexes and central barrier transition state than MP2. BhandH, with either the aug-cc-pVDZ or aug-cc-pVTZ basis sets, gives good agreement with the experimental structures for both CH(3)I and CH(3)Cl. The frequencies of CH(3)I and CH(3)Cl, obtained with the different levels of theory and basis sets, are in excellent agreement with experiment. The major difference between the MP2 and DFT frequencies is for the imaginary frequency of the central barrier. Using the aug-cc-pVTZ basis the MP2 value for this frequency ranges from 1.26 to 1.59 times larger than those for the DFT functionals. Thus, the MP2 and DFT theories have different PES shapes in the vicinity of the [Cl--CH(3)--I](-) central barrier. The CCSD(T)/CBS energies are in good agreement with experiments for the complexation energies and reaction exothermicity, with a small 1 kcal/mol difference for the latter. The CCSD(T)/CBS central barrier height is lower than values deduced by using statistical theoretical models to fit the Cl(-) + CH(3)I --> ClCH(3) + I(-) experimental rate constant, which is consistent with the expected nonstatistical dynamics for the reaction. The BhandH energies are in overall best agreement with the CCSD(T) values, with a largest difference of only 0.7 kcal/mol.


Journal of Physics: Conference Series | 2009

Kinematically complete chemical reaction dynamics

Sebastian Trippel; M Stei; Rico Otto; P. Hlavenka; Jochen Mikosch; C. Eichhorn; Upakarasamy Lourderaj; J X Zhang; William L. Hase; M. Weidemüller

Kinematically complete studies of molecular reactions offer an unprecedented level of insight into the dynamics and the different mechanisms by which chemical reactions occur. We have developed a scheme to study ion-molecule reactions by velocity map imaging at very low collision energies. Results for the elementary nucleophilic substitution (SN2) reaction Cl- + CH3I → ClCH3 + I- are presented and compared to high-level direct dynamics trajectory calculations. Furthermore, an improved design of the crossed-beam imaging spectrometer with full three-dimensional measurement capabilities is discussed and characterization measurements using photoionization of NH3 and photodissociation of CH3I are presented.


Journal of Physical Chemistry A | 2009

Theoretical investigation of mechanisms for the gas-phase unimolecular decomposition of DMMP.

Li Yang; Robert M. Shroll; Jiaxu Zhang; Upakarasamy Lourderaj; William L. Hase

All species involved in the multichannel decomposition of gas-phase dimethyl methylphosphonate (DMMP) were investigated by electronic structure calculations. Geometries for stationary structures along the reaction paths, were fully optimized with the MP2 method and the B3LYP and MPW1K DFT functionals, and the 6-31G*, 6-31++G**, and aug-cc-pVDZ basis sets. The geometries determined by the B3LYP and MPW1K functionals are in very good agreement with the MP2 values. Increasing the basis set size from 6-31G* to aug-cc-pVDZ does not significantly alter this result. Single point energy calculations were carried out with highly accurate but computationally more expensive CBS-QB3 theory. DMMP has three conformers, which lead to the four primary product channels, (O)P(CH(2))(OCH(3)) + CH(3)OH, (O)P(CH(3)) (OCH(3))(OH) + CH(2), c-(O)P(CH(3))OCH(2) + CH(3)OH, and (O)P(CH(3))(OCH(3))(OCH) + H(2). The first channel has the lowest energy barrier and is expected to be the most important pathway. It occurs via C-H and P-O bond cleavages accompanied by O-H bond formation. The other three channels have higher and similar energy barriers, and are expected to have smaller and similar rates. The product (O)P(CH(3))(OCH(3))(OCH) undergoes a secondary decomposition to form (OH)P(CH(3))(OCH(3)) + CO.


Chemical Physics Letters | 2002

Time-dependent density functional theoretical study of low lying excited states of F2

Upakarasamy Lourderaj; Manoj K. Harbola; N. Sathyamurthy

The utility of time-dependent density functional theory (TDDFT) in predicting excitation energies is tested for the low lying excited states of F 2 , a system that has posed severe challenges to ab initio quantum theory. It is shown that TDDFT using B3LYP functional predicts the excitation energies in good agreement with experiment. In some cases, the agreement is better than that for the post-Hartree-Fock methods like CASSCF and MRCI.


Journal of Physical Chemistry A | 2016

Time-Dependent Density Functional Theoretical Investigation of Photoinduced Excited-State Intramolecular Dual Proton Transfer in Diformyl Dipyrromethanes

Renuka Pradhan; Aparna Karippara Harshan; Gowri Sreedevi Krishnavilasam Chandrika; Alagar Srinivasan; Upakarasamy Lourderaj

In recent research [ Chem. Commun. 2014 , 50 , 8667 ], it was found that photoinduced enolization occurred in 1,9-diformyl-5,5-diaryldipyrromethane (DAKK) by excited-state dual proton transfer resulting in a red-shifted absorption, a phenomena not observed in 1,9-diformyl-5,5-dimethyldipyrromethane (DMKK) and 1,9-diformyl-5-aryldipyrromethane (MAKK). The observation was supported by preliminary density functional theoretical (DFT) calculations. In the work reported here, a detailed and systematic study was undertaken considering four molecules, 1,9-diformyldipyrromethane (DHKK), DMKK, MAKK, and DAKK and their rotational isomers using DFT methods. Different processes, namely, cis-trans isomerization and single and double proton transfer processes, and their mechanistic details were investigated in the ground and excited states. From the simulation studies, it was seen that the presence of different substituents at the meso carbon does not affect the λabs values during cis → trans isomerization. However, enolization by proton transfer processes were found to be influenced by the substituents, as seen in the experiments. Enolization was observed to follow a stepwise mechanism, that is, diketo → monoenol → dienol. While monoenols showed negligible substituent effects on the λabs values, a large red shift in λabs was seen only in DAKK, in agreement with the experimental findings. This observation can be attributed to the lowering of the keto → enol activation barrier, stabilization of DAEE in the S1 state, and the charge transfer nature of the transitions involved in DAEE.

Collaboration


Dive into the Upakarasamy Lourderaj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaxu Zhang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio Martínez-Núñez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Nishant Sharma

National Institute of Science Education and Research

View shared research outputs
Top Co-Authors

Avatar

Renuka Pradhan

National Institute of Science Education and Research

View shared research outputs
Top Co-Authors

Avatar

Asha Sharma

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Li Yang

Texas Tech University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge