Upasana Arora
International Centre for Genetic Engineering and Biotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Upasana Arora.
Journal of Nanobiotechnology | 2012
Upasana Arora; Poornima Tyagi; Sathyamangalam Swaminathan; Navin Khanna
BackgroundDengue is a global public health problem for which no drug or vaccine is available. Currently, there is increasing interest in developing non-replicating dengue vaccines based on a discrete antigenic domain of the major structural protein of dengue viruses (DENVs), known as envelope domain III (EDIII). The use of bio-nanoparticles consisting of recombinant viral structural polypeptides, better known as virus-like particles (VLPs), has emerged as a potential platform technology for vaccine development. This work explores the feasibility of developing nanoparticles based on E. coli- expressed recombinant Hepatitis B virus core antigen (HBcAg) designed to display EDIII moiety of DENV on the surface.FindingsWe designed a synthetic gene construct encoding HBcAg containing an EDIII insert in its c/e1 loop. The fusion antigen HBcAg-EDIII-2 was expressed in E. coli, purified to near homogeneity using Ni+2 affinity chromatography and demonstrated to assemble into discrete 35–40 nm VLPs by electron microscopy. Competitive ELISA analyses showed that the EDIII-2 moieties of the VLPs are accessible to anti-EDIII-2-specific monoclonal and polyclonal antibodies, suggesting that they are surface-displayed. The VLPs were highly immunogenic eliciting high titer anti-EDIII-2 antibodies that were able to recognize, bind and neutralize infectious DENV based on ELISA, immunofluorescence and virus-neutralization assays.ConclusionThis work demonstrates that HBcAg-derived nanoparticles can serve as a useful platform for the display of DENV EDIII. The EDIII-displaying nanoparticles may have potential applications in diagnostics/vaccines for dengue.
PLOS ONE | 2013
Shailendra Mani; Lav Tripathi; Rajendra Raut; Poornima Tyagi; Upasana Arora; Tarani Kanta Barman; Ruchi Sood; Alka Galav; Wahala M.P.B. Wahala; Aravinda M. de Silva; Sathyamangalam Swaminathan; Navin Khanna
Dengue is a mosquito-borne viral disease with a global prevalence. It is caused by four closely-related dengue viruses (DENVs 1–4). A dengue vaccine that can protect against all four viruses is an unmet public health need. Live attenuated vaccine development efforts have encountered unexpected interactions between the vaccine viruses, raising safety concerns. This has emphasized the need to explore non-replicating dengue vaccine options. Virus-like particles (VLPs) which can elicit robust immunity in the absence of infection offer potential promise for the development of non-replicating dengue vaccine alternatives. We have used the methylotrophic yeast Pichia pastoris to develop DENV envelope (E) protein-based VLPs. We designed a synthetic codon-optimized gene, encoding the N-terminal 395 amino acid residues of the DENV-2 E protein. It also included 5’ pre-membrane-derived signal peptide-encoding sequences to ensure proper translational processing, and 3’ 6× His tag-encoding sequences to facilitate purification of the expressed protein. This gene was integrated into the genome of P. pastoris host and expressed under the alcohol oxidase 1 promoter by methanol induction. Recombinant DENV-2 protein, which was present in the insoluble membrane fraction, was extracted and purified using Ni2+-affinity chromatography under denaturing conditions. Amino terminal sequencing and detection of glycosylation indicated that DENV-2 E had undergone proper post-translational processing. Electron microscopy revealed the presence of discrete VLPs in the purified protein preparation after dialysis. The E protein present in these VLPs was recognized by two different conformation-sensitive monoclonal antibodies. Low doses of DENV-2 E VLPs formulated in alum were immunogenic in inbred and outbred mice eliciting virus neutralizing titers >1∶1200 in flow cytometry based assays and protected AG129 mice against lethal challenge (p<0.05). The formation of immunogenic DENV-2 E VLPs in the absence of pre-membrane protein highlights the potential of P. pastoris in developing non-replicating, safe, efficacious and affordable dengue vaccine.
Vaccine | 2013
Upasana Arora; Poornima Tyagi; Sathyamangalam Swaminathan; Navin Khanna
OBJECTIVE Currently, dengue represents one of the most significant arboviral disease worldwide, for which a vaccine is not yet available. Persistent challenges in live viral dengue vaccines have sparked a keen interest in exploring non-replicating dengue vaccines. We have examined the feasibility of using the methylotrophic yeast Pichia pastoris to develop a chimeric vaccine candidate displaying the dengue virus type-2 (DENV-2) envelope domain III (EDIII), implicated in host receptor binding and in the induction of virus-neutralizing antibodies, on the surface of non-infectious virus-like particles (VLP)-based on the Hepatitis B virus core antigen (HBcAg). METHODS We designed a fusion antigen by inserting DENV-2 EDIII into c/e1 loop of HBcAg. A codon-optimized gene encoding this fusion antigen was integrated into the genome of P. pastoris, under the control of the Alcohol Oxidase 1 promoter. The antigen was expressed by methanol induction and purified to near homogeneity by Ni(2+) affinity chromatography. The purified antigen was characterized physically and functionally to evaluate its ability to assemble into VLPs, and elicit DENV-2-specific antibodies in mice. RESULTS This fusion antigen was expressed successfully to high yields and purified to near homogeneity. Electron microscopy and competitive ELISA analyses showed that it formed VLPs in which the EDIII moiety was accessible to different EDIII-specific antibodies. These VLPs were immunogenic in mice, stimulating the production of antibodies that could specifically recognize DENV-2 and neutralize its infectivity. However, virus-neutralizing antibody titers were modest. CONCLUSIONS Our data show: (i) insertion of EDIII into the c/e1 loop of HBcAg does not compromise particle assembly; and (ii) the chimeric VLPs elicit a specific humoral response against DENV-2. The strategy of displaying dengue virus EDIII using a VLP platform will need further optimization before it may be developed into a viable alternative option.
Frontiers in Microbiology | 2015
Lav Tripathi; Shailendra Mani; Rajendra Raut; Ankur Poddar; Poornima Tyagi; Upasana Arora; Aravinda M. de Silva; Navin Khanna
Dengue poses a serious public health risk to nearly half the global population. It causes ~400 million infections annually and is considered to be one of the fastest spreading vector-borne diseases. Four distinct serotypes of dengue viruses (DENV-1, -2, -3, and -4) cause dengue disease, which may be either mild or extremely severe. Antibody-dependent enhancement (ADE), by pre-existing cross-reactive antibodies, is considered to be the major mechanism underlying severe disease. This mandates that a preventive vaccine must confer simultaneous and durable immunity to each of the four prevalent DENV serotypes. Recently, we used Pichia pastoris, to express recombinant DENV-2 E ectodomain, and found that it assembled into virus-like particles (VLPs), in the absence of prM, implicated in the elicitation of ADE-mediating antibodies. These VLPs elicited predominantly type-specific neutralizing antibodies that conferred significant protection against lethal DENV-2 challenge, in a mouse model. The current work is an extension of this approach to develop prM-lacking DENV-3 E VLPs. Our data reveal that P. pastoris-produced DENV-3 E VLPs not only preserve the antigenic integrity of the major neutralizing epitopes, but also elicit potent DENV-3 virus-neutralizing antibodies. Further, these neutralizing antibodies appear to be exclusively directed toward domain III of the DENV-3 E VLPs. Significantly, they also lack discernible ADE potential toward heterotypic DENVs. Taken together with the high productivity of the P. pastoris expression system, this approach could potentially pave the way toward developing a DENV E-based, inexpensive, safe, and efficacious tetravalent sub-unit vaccine, for use in resource-poor dengue endemic countries.
PLOS Neglected Tropical Diseases | 2018
Viswanathan Ramasamy; Upasana Arora; Rahul Shukla; Ankur Poddar; Rajgokul K. Shanmugam; Laura J. White; Melissa M. Mattocks; Rajendra Raut; Ashiya Perween; Poornima Tyagi; Aravinda M. de Silva; Siddhartha Kumar Bhaumik; Murali Krishna Kaja; Francois Villinger; Rafi Ahmed; Robert E. Johnston; Sathyamangalam Swaminathan; Navin Khanna
Background Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. Methodology/principal findings We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. Conclusions/significance Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate.
American Journal of Tropical Medicine and Hygiene | 2017
Niyati Khetarpal; Rahul Shukla; Ravi Kant Rajpoot; Ankur Poddar; Meena Pal; Upasana Arora; Navin Khanna
Dengue is a viral pandemic caused by four dengue virus serotypes (DENV-1, 2, 3, and 4) transmitted by Aedes mosquitoes. Reportedly, there has been a 2-fold increase in dengue cases every decade. An efficacious tetravalent vaccine, which can provide long-term immunity against all four serotypes in all target populations, is still unavailable. Despite the progress being made in the live virus-based dengue vaccines, the World Health Organization strongly recommends the development of alternative approaches for safe, affordable, and efficacious dengue vaccine candidates. We have explored virus-like particles (VLPs)-based nonreplicating subunit vaccine approach and have developed recombinant envelope ectodomains of DENV-1, 2, and 3 expressed in Pichia pastoris These self-assembled into VLPs without pre-membrane (prM) protein, which limits the generation of enhancing antibodies, and elicited type-specific neutralizing antibodies against the respective serotype. Encouraged by these results, we have extended this work further by developing P. pastoris-expressed DENV-4 ectodomain (DENV-4 E) in this study, which was found to be glycosylated and assembled into spherical VLPs without prM, and displayed critical neutralizing epitopes on its surface. These VLPs were found to be immunogenic in mice and elicited DENV-4-specific neutralizing antibodies, which were predominantly directed against envelope domain III, implicated in host-receptor recognition and virus entry. These observations underscore the potential of VLP-based nonreplicative vaccine approach as a means to develop a safe, efficacious, and tetravalent dengue subunit vaccine. This work paves the way for the evaluation of a DENV E-based tetravalent dengue vaccine candidate, as an alternative to live virus-based dengue vaccines.
BMC Biotechnology | 2016
Ankur Poddar; Viswanathan Ramasamy; Rahul Shukla; Ravi Kant Rajpoot; Upasana Arora; Swatantra Kumar Jain; Navin Khanna
BackgroundFour antigenically distinct serotypes (1–4) of dengue viruses (DENVs) cause dengue disease. Antibodies to any one DENV serotype have the potential to predispose an individual to more severe disease upon infection with a different DENV serotype. A dengue vaccine must elicit homotypic neutralizing antibodies to all four DENV serotypes to avoid the risk of such antibody-dependent enhancement in the vaccine recipient. This is a formidable challenge as evident from the lack of protective efficacy against DENV-2 by a tetravalent live attenuated dengue vaccine that has completed phase III trials recently. These trial data underscore the need to explore non-replicating subunit vaccine alternatives. Recently, using the methylotrophic yeast Pichia pastoris, we showed that DENV-2 and DENV-3 envelope (E) glycoproteins, expressed in absence of prM, implicated in causing severe dengue disease, self-assemble into virus-like particles (VLPs), which elicit predominantly virus-neutralizing antibodies and confer significant protection against lethal DENV challenge in an animal model. The current study extends this work to a third DENV serotype.ResultsWe cloned and expressed DENV-1 E antigen in P. pastoris, and purified it to near homogeneity. Recombinant DENV-1 E underwent post-translational processing, namely, signal peptide cleavage and glycosylation. Purified DENV-1 E self-assembled into stable VLPs, based on electron microscopy and dynamic light scattering analysis. Epitope mapping with monoclonal antibodies revealed that the VLPs retained the overall antigenic integrity of the virion particles despite the absence of prM. Subtle changes accompanied the efficient display of E domain III (EDIII), which contains type-specific neutralizing epitopes. These VLPs were immunogenic, eliciting predominantly homotypic EDIII-directed DENV-1-specific neutralizing antibodies.ConclusionsThis work demonstrates the inherent potential of P. pastoris-expressed DENV-1 E glycoprotein to self-assemble into VLPs eliciting predominantly homotypic neutralizing antibodies. This work justifies an investigation of the last remaining serotype, namely, DENV-4, to assess if it also shares the desirable vaccine potential manifested by the remaining three DENV serotypes. Such efforts could make it possible to envisage the development of a tetravalent dengue vaccine based on VLPs of P. pastoris-expressed E glycoproteins of the four DENV serotypes.
Journal of Nanobiotechnology | 2013
Niyati Khetarpal; Ankur Poddar; Satish Kumar Nemani; Nisha Dhar; Aravind Patil; Priyanka Negi; Ashiya Perween; Ramaswamy Viswanathan; Heinrich Lünsdorf; Poornima Tyagi; Rajendra Raut; Upasana Arora; Swatantra Kumar Jain; Ursula Rinas; Sathyamangalam Swaminathan; Navin Khanna
BackgroundDengue is today the most significant of arboviral diseases. Novel tools are necessary to effectively address the problem of dengue. Virus-like particles (VLP) offer a versatile nanoscale platform for developing tools with potential biomedical applications. From the perspective of a potentially useful dengue-specific tool, the dengue virus envelope protein domain III (EDIII), endowed with serotype-specificity, host receptor recognition and the capacity to elicit virus-neutralizing antibodies, is an attractive candidate.MethodsWe have developed a strategy to co-express and co-purify Hepatitis B virus surface (S) antigen in two forms: independently and as a fusion with EDIII. We characterized these physically and functionally.ResultsThe two forms of the S antigen associate into VLPs. The ability of these to display EDIII in a functionally accessible manner is dependent upon the relative levels of the two forms of the S antigen. Mosaic VLPs containing the fused and un-fused components in 1:4 ratio displayed maximal functional competence.ConclusionsVLPs armed with EDIII may be potentially useful in diagnostic, therapeutic and prophylactic applications.
Frontiers in Microbiology | 2018
Rahul Shukla; Ravi Kant Rajpoot; Upasana Arora; Ankur Poddar; Sathyamangalam Swaminathan; Navin Khanna
Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4). Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE). A recently launched live attenuated vaccine (LAV) for dengue, which consists of a mixture of four chimeric yellow-fever/dengue vaccine viruses, may be linked to the induction of disease-enhancing antibodies. This is likely related to viral interference among the replicating viral strains, resulting in an unbalanced immune response, as well as to the fact that the LAV encodes prM, a DENV protein documented to elicit ADE-mediating antibodies. This makes it imperative to explore the feasibility of alternate ADE risk-free vaccine candidates. Our quest for a non-replicating vaccine centered on the DENV envelope (E) protein which mediates virus entry into the host cell and serves as an important target of the immune response. Serotype-specific neutralizing epitopes and the host receptor recognition function map to E domain III (EDIII). Recently, we found that Pichia pastoris-expressed DENV E protein, of all four serotypes, self-assembled into virus-like particles (VLPs) in the absence of prM. Significantly, these VLPs displayed EDIII and elicited EDIII-focused DENV-neutralizing antibodies in mice. We now report the creation and characterization of a novel non-replicating recombinant particulate vaccine candidate, produced by co-expressing the E proteins of DENV-1 and DENV-2 in P. pastoris. The two E proteins co-assembled into bivalent mosaic VLPs (mVLPs) designated as mE1E2bv VLPs. The mVLP, which preserved the serotype-specific antigenic integrity of its two component proteins, elicited predominantly EDIII-focused homotypic virus-neutralizing antibodies in BALB/c mice, demonstrating its efficacy. In an in vivo ADE model, mE1E2bv VLP-induced antibodies lacked discernible ADE potential, compared to the cross-reactive monoclonal antibody 4G2, as evidenced by significant reduction in the levels of IL-6 and TNF-α, suggesting inherent safety. The results obtained with these bivalent mVLPs suggest the feasibility of incorporating the E proteins of DENV-3 and DENV-4 to create a tetravalent mVLP vaccine.
Scientific Reports | 2018
Ravi Kant Rajpoot; Rahul Shukla; Upasana Arora; Sathyamangalam Swaminathan; Navin Khanna
Dengue is a significant public health problem worldwide, caused by four antigenically distinct mosquito-borne dengue virus (DENV) serotypes. Antibodies to any given DENV serotype which can afford protection against that serotype tend to enhance infection by other DENV serotypes, by a phenomenon termed antibody-dependent enhancement (ADE). Antibodies to the viral pre-membrane (prM) protein have been implicated in ADE. We show that co-expression of the envelope protein of all four DENV serotypes, in the yeast Pichia pastoris, leads to their co-assembly, in the absence of prM, into tetravalent mosaic VLPs (T-mVLPs), which retain the serotype-specific antigenic integrity and immunogenicity of all four types of their monomeric precursors. Following a three-dose immunisation schedule, the T-mVLPs elicited EDIII-directed antibodies in mice which could neutralise all four DENV serotypes. Importantly, anti-T-mVLP antibodies did not augment sub-lethal DENV-2 infection of dengue-sensitive AG129 mice, based on multiple parameters. The ‘four-in-one’ tetravalent T-mVLPs possess multiple desirable features which may potentially contribute to safety (non-viral, prM-lacking and ADE potential-lacking), immunogenicity (induction of virus-neutralising antibodies), and low cost (single tetravalent immunogen produced using P. pastoris, an expression system known for its high productivity using simple inexpensive media). These results strongly warrant further exploration of this vaccine candidate.
Collaboration
Dive into the Upasana Arora's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs