Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uri Shavit is active.

Publication


Featured researches published by Uri Shavit.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water

Tali Mass; Amatzia Genin; Uri Shavit; Mor Grinstein; Dan Tchernov

Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.


Ultrasonics | 2001

Preliminary investigations of ultrasound induced acoustic streaming using particle image velocimetry

Victor Frenkel; Roi Gurka; Alex Liberzon; Uri Shavit; Eitan Kimmel

Particle image velocimetry was used to investigate ultrasound-induced acoustic streaming in a system for the enhanced uptake of substances from the aquatic medium into fish. Four distinct regions of the induced streaming in the system were observed and measured. One of the regions was identified as an preferential site for substance uptake, where the highest velocities in proximity to the fish surface were measured. A positive linear relationship was found between the ultrasound intensity and the maximum streaming velocity, where a unitless geometric factor, specific to the system, was calculated for correcting the numerical relationship between the two parameters. The results are part of a comprehensive study aimed at improving mass transdermal administrations of substances (e.g. vaccines, hormones) into fish from the aquatic medium.


PLOS ONE | 2011

The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan

Sally P. Leys; Gitai Yahel; Matthew A. Reidenbach; Verena Tunnicliffe; Uri Shavit; Henry M. Reiswig

Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using “passive” flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.


Journal of Controlled Release | 2003

Wetting mechanisms of gel-based controlled-release fertilizers

Uri Shavit; Avi Shaviv

The release mechanism of gel-based controlled release fertilizers (CRFs) involves water penetration into dry mixtures of fertilizers and gel forming polymers. Water penetration provides an upper limit to the whole release process. Where wetting prediction is often based on models that describe the flow of the liquid phase, vapor motion may become significant when a sharp wetting front exists. In this study we examine the role of vapor and fluid flows in the wetting process of CRFs consisting of urea or KNO(3) mixed with polyacrylamide (PAM). Vapor adsorption isotherms were obtained for typical fertilizer-PAM mixtures. Wetting and release experiments were conducted by dividing the CRFs into regions alternately filled with a pure fertilizer and mixtures of PAM and fertilizer. The experiments were designed in such a way that when the wetting front reaches a mixtures interface, its motion depends on the gradient imposed by the difference in osmotic potential (OP). The coupled equations of vapor and liquid flow in initially dry conditions were solved numerically to demonstrate the conceptual understanding gained by the experiments. The results show that wetting front motion is affected by transport and adsorption of vapor. It was also shown that the release rate is different when wetting is governed by vapor flow or by liquid flow. The release pattern from a multi-regions device was consistent with the wetting pattern, demonstrating the possibility to tailor the release according to periods of peak demand.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Benefit of pulsation in soft corals

Maya Kremien; Uri Shavit; Tali Mass; Amatzia Genin

Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.


Transport in Porous Media | 2004

Free Flow at the Interface of Porous Surfaces: A Generalization of the Taylor Brush Configuration

Uri Shavit; Ravid Rosenzweig; S. Assouline

A solution to the problem of shallow laminar water flow above a porous surface is essential when modeling phenomena such as erosion, resuspension, and mass transfer between the porous media and the flow above it. Previous studies proposed theoretical, experimental, and numerical insight with no single general solution to the problem. Many studies have used the Brinkman equation, while others showed that it does not represent the actual interface flow conditions. In this paper we show that the interface macroscopic velocity can be accurately modeled by introducing a modification to the Brinkman equation. A moving average approach was proved to be successful when choosing the correct representative elementary volume and comparing the macroscopic solution with the average microscopic flow. As the size of the representative elementary volume was found to be equal to the product of the square root of the permeability and an exponential function of the porosity, a general solution is now available for any brush configuration. Given the properties of the porous media (porosity and permeability), the flow height and its driving force, a complete macroscopic solution of the interface flow is obtained.


Journal of Controlled Release | 1995

Solute diffusion coefficient in the internal medium of a new gel based controlled release fertilizer

Uri Shavit; Avi Shaviv; Dan Zaslavsky

Abstract The diffusion of solutes in a new controlled release device was investigated and in situ measurements of constant and variable diffusion coefficients were obtained. The new controlled release device consists of a dry mixture of fertilizer and gel forming thickener contained in a nonpermeable coating having at least one opening. Water penetrates into the device through the opening, forms a gel and dissolves the fertilizer, which is then released by Fickian or non-Fickian diffusion mechanisms. Based on measurements of the penetration of water and the dissolution of fertilizer, the pseudo-steady state transport equation was solved and the solute diffusion coefficient was calculated. The computation of the diffusion coefficient was possible solely because a dual boundary condition exists at the dissolution front. An analytical solution was developed assuming a constant diffusion coefficient. A numerical solution was obtained for the case where the diffusion coefficient is concentration dependent. Two thickeners were tested: sodium carboxymethylcellulose (Na-CMC) and sodium polyacrylamide (Na-PAM). It was found that the solute diffusion mechanism in Na-CMC gels is Fickian-like and can be approximated by a constant diffusion coefficient. The solute diffusion in Na-PAM gels showed non-Fickian behavior and was estimated numerically using the variable diffusion coefficient. For comparison with the theoretical solutions, a dialysis cell was used to simulate the conditions in the gel formed inside the device and to evaluate the effects of thickener concentration on the diffusion coefficient. Reasonable agreement was found between the pseudo-steady state solutions and the dialysis cell experimental results.


Water Resources Research | 2014

Modeling biofilm dynamics and hydraulic properties in variably saturated soils using a channel network model

Ravid Rosenzweig; Alex Furman; Carlos G. Dosoretz; Uri Shavit

Biofilm effects on water flow in unsaturated environments have largely been ignored in the past. However, intensive engineered systems that involve elevated organic loads such as wastewater irrigation, effluent recharge, and bioremediation processes make understanding how biofilms affect flow highly important. In the current work, we present a channel-network model that incorporates water flow, substrate transport, and biofilm dynamics to simulate the alteration of soil hydraulic properties, namely water retention and conductivity. The change in hydraulic properties due to biofilm growth is not trivial and depends highly on the spatial distribution of the biofilm development. Our results indicate that the substrate mass transfer coefficient across the water-biofilm interface dominates the spatiotemporal distribution of biofilm. High mass transfer coefficients lead to uncontrolled biofilm growth close to the substrate source, resulting in preferential clogging of the soil. Low mass transfer coefficients, on the other hand, lead to a more uniform biofilm distribution. The first scenario leads to a dramatic reduction of the hydraulic conductivity with almost no change in water retention, whereas the second scenario has a smaller effect on conductivity but a larger influence on retention. The current modeling approach identifies key factors that still need to be studied and opens the way for simulation and optimization of processes involving significant biological activity in unsaturated soils.


Journal of Hydrology | 2003

A numerical study on the influence of fractured regions on lake/groundwater interaction; the Lake Kinneret (Sea of Galilee) case

Hila Abbo; Uri Shavit; Doron Markel; Alon Rimmer

Increased lake salinity is a growing problem in arid and semi-arid regions. Operational management, which is based on a reliable hydrological understanding, has the potential to reduce the lake salinity. This is the case of the salinity in Lake Kinneret (Sea of Galilee), where saline water flows into the lake through on-shore and off-shore springs. Here, we present a time-dependent flow and transport numerical model that successfully reproduces the monitored groundwater level, discharge, and salinity of the lake springs. The model utilizes a continuum approach and describes the flow through a confined saline carbonate aquifer, which interacts with the discharge lake through fractures and faults. In particular, the model investigates the hydrology around two groups of springs, Fuliya and Tabgha, along the western shore of the lake. Based on seasonal characteristics of the springs and measured boundary conditions, the two springs groups were defined as Lake Dominated Springs (LDS, Fuliya) and Aquifer Dominated Springs (ADS, Tabgha). The models of the two groups differ from each other in the distribution of fractured regions that link between the lake and the underlying aquifers. The numerical solution shows how the fractured regions affect groundwater head, spring discharge, and spring salinity. The different behavior of the LDS and ADS was reproduced with an excellent agreement between measured and calculated patterns. Differences in salinity within a group of springs are shown to be dependent on the depth of the fractured region. It was revealed that in addition to the appropriate distribution of fractured regions some adjustment in the up-stream boundary conditions is necessary to fully reproduce the system hydrology. The model has improved our understanding and provides a prediction tool for future management strategies.


Water Resources Research | 2014

Impact of ambient conditions on evaporation from porous media

Asaf Ben Neriah; Shmuel Assouline; Uri Shavit; Noam Weisbrod

The complexity of soil evaporation, depending on the atmospheric conditions, emphasizes the importance of its quantification under potential changes in ambient air temperature, Ta, and relative humidity, RH. Mass loss, soil matric tension, and meteorological measurements, carried out in a climate-controlled laboratory, were used to study the effect of ambient conditions on the drying rates of a porous medium. A set of evaporation experiments from initially saturated sand columns were carried out under constant Ta of 6, 15, 25, and 35°C and related RH (0.66, 0.83, 1.08, and 1.41 kPa, respectively). The results show that the expected increase of the stage 1 (S1) evaporation rate with Ta but also revealed an exponential-like reduction in the duration of S1, which decreased from 29 to 2.3 days (at Ta of 6 and 35°C, respectively). The evaporation rate, e(t), was equal to the potential evaporation, ep(t), under Ta = 6°C, while it was always smaller than ep(t) under higher Ta. The cumulative evaporation during S1 was higher under Ta = 6°C than under the higher temperatures. Evaporation rates during S2 were practically unaffected by ambient conditions. The results were analyzed using a mass transfer formulation linking e(t) with the vapor pressure deficit through a resistance coefficient r. It was shown that rS1 (the resistance during S1) is constant, indicating that the application of such an approach is straightforward during S1. However, for evaporation from a free water surface and S2, the resistances, rBL and rS2, were temperature-dependent, introducing some complexity for these cases.

Collaboration


Dive into the Uri Shavit's collaboration.

Top Co-Authors

Avatar

Ravid Rosenzweig

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Efrat Farber

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ittai Gavrieli

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ran Holtzman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Avi Shaviv

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alex Furman

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michal Segal

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Bullen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge