Uriel Kitron
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uriel Kitron.
PLOS Neglected Tropical Diseases | 2009
Steven T. Stoddard; Amy C. Morrison; Gonzalo M. Vazquez-Prokopec; Valerie A. Paz Soldan; Tadeusz J. Kochel; Uriel Kitron; John P. Elder; Thomas W. Scott
Background Human movement is a key behavioral factor in many vector-borne disease systems because it influences exposure to vectors and thus the transmission of pathogens. Human movement transcends spatial and temporal scales with different influences on disease dynamics. Here we develop a conceptual model to evaluate the importance of variation in exposure due to individual human movements for pathogen transmission, focusing on mosquito-borne dengue virus. Methodology and Principal Findings We develop a model showing that the relevance of human movement at a particular scale depends on vector behavior. Focusing on the day-biting Aedes aegypti, we illustrate how vector biting behavior combined with fine-scale movements of individual humans engaged in their regular daily routine can influence transmission. Using a simple example, we estimate a transmission rate (R0) of 1.3 when exposure is assumed to occur only in the home versus 3.75 when exposure at multiple locations—e.g., market, friends—due to movement is considered. Movement also influences for which sites and individuals risk is greatest. For the example considered, intriguingly, our model predicts little correspondence between vector abundance in a site and estimated R0 for that site when movement is considered. This illustrates the importance of human movement for understanding and predicting the dynamics of a disease like dengue. To encourage investigation of human movement and disease, we review methods currently available to study human movement and, based on our experience studying dengue in Peru, discuss several important questions to address when designing a study. Conclusions/Significance Human movement is a critical, understudied behavioral component underlying the transmission dynamics of many vector-borne pathogens. Understanding movement will facilitate identification of key individuals and sites in the transmission of pathogens such as dengue, which then may provide targets for surveillance, intervention, and improved disease prevention.
Journal of Parasitology | 1995
J. P. Dubey; Ronald M. Weigel; A. M. Siegel; P. Thulliez; Uriel Kitron; Mark A. Mitchell; Alessandro Mannelli; Nohra Mateus-Pinilla; S. K. Shen; O. C. H. Kwok; Kenneth S. Todd
Field studies were conducted on 47 swine farms in Illinois during 1992 and 1993 to identify sources and reservoirs of Toxoplasma gondii infection. Blood samples were obtained from swine and from trapped wildlife. Serum antibodies to T. gondii were determined using the modified agglutination test, incorporating mercaptoethanol. Antibodies to T. gondii (titer > or = 25) were found in 97 of 4,252 (2.3%) finishing pigs, 395 of 2,617 (15.1%) sows, 267 of 391 (68.3%) cats, 126 of 188 (67.0%) raccoons, 7 of 18 (38.9%) skunks, 29 of 128 opossums (22.7%), 6 of 95 (6.3%) rats, 3 of 61 (4.9%) white-footed mice (Peromyscus sp.), and 26 of 1,243 (2.1%) house mice (Mus musculus). Brains and hearts of rodents trapped on the farm were bioassayed in mice for the presence of T. gondii. Toxoplasma gondii was recovered from tissues of 7 of 1,502 (0.5%) house mice, 2 of 67 (3.0%) white-footed mice, and 1 of 107 (0.9%) rats. Feces of 274 cats trapped on the farm and samples of feed, water, and soil were bioassayed in mice for the presence of T. gondii oocysts. Toxoplasma gondii was isolated from 2 of 491 (0.4%) feed samples, 1 of 79 (1.3%) soil samples, and 5 of 274 (1.8%) samples of cat feces. All mammalian species examined were reservoirs of T. gondii infection. All farms had evidence of T. gondii infection either by detection of antibodies in swine or other mammalian species, or by detection of oocysts, or by recovery from rodents by bioassay. The possibility of transmission of T. gondii to swine via consumption of rodents, feed, and soil was confirmed.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Ricardo E. Gürtler; Uriel Kitron; M. Carla Cecere; Elsa L. Segura; Joel E. Cohen
Chagas disease remains a serious obstacle to health and economic development in Latin America, especially for the rural poor. We report the long-term effects of interventions in rural villages in northern Argentina during 1984–2006. Two community-wide campaigns of residual insecticide spraying immediately and strongly reduced domestic infestation and infection with Trypanosoma cruzi in Triatoma infestans bugs and dogs and more gradually reduced the seroprevalence of children <15 years of age. Because no effective surveillance and control actions followed the first campaign in 1985, transmission resurged in 2–3 years. Renewed interventions in 1992 followed by sustained, supervised, community-based vector control largely suppressed the reestablishment of domestic bug colonies and finally led to the interruption of local human T. cruzi transmission. Human incidence of infection was nearly an order of magnitude higher in peripheral rural areas under pulsed, unsupervised, community-based interventions, where human transmission became apparent in 2000. The sustained, supervised, community-based strategy nearly interrupted domestic transmission to dogs but did not eliminate T. infestans despite the absence of pyrethroid-insecticide resistance. T. infestans persisted in part because of the lack of major changes in housing construction and quality. Sustained community participation grew out of establishing a trusted relationship with the affected communities and the local schools. The process included health promotion and community mobilization, motivation, and supervision in close cooperation with locally nominated leaders.
PLOS Medicine | 2007
Rick L. Tarleton; Richard Reithinger; Julio A. Urbina; Uriel Kitron; Ricardo E. Gürtler
The authors discuss the key challenges that undermine the control of Chagas disease and that must be urgently addressed to ensure long-term, sustainable control.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Steven T. Stoddard; Brett M. Forshey; Amy C. Morrison; Valerie A. Paz-Soldan; Gonzalo M. Vazquez-Prokopec; Helvio Astete; Robert C. Reiner; Stalin Vilcarromero; John P. Elder; Eric S. Halsey; Tadeusz J. Kochel; Uriel Kitron; Thomas W. Scott
Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention.
International Journal of Health Geographics | 2004
Marilyn O. Ruiz; Carmen Tedesco; Thomas McTighe; Connie Austin; Uriel Kitron
BackgroundThe outbreak of West Nile Virus (WNV) in and around Chicago in 2002 included over 680 cases of human illness caused by the virus within this region. The notable clustering of the cases in two well-defined areas suggests the existence of specific environmental and social factors that increase the risk for WNV infection and/or illness in these locations. This investigation sought to create an empirically based model to account for these factors and to assess their importance in explaining the possible processes that may have led to this pattern.ResultsThe cluster pattern of high incidence of cases was statistically significant. The risk factors that were found to be important included the presence of vegetation, age, income, and race of the human population, distance to a WNV positive dead bird specimen, age of housing, mosquito abatement and geological factors. The effect of different mosquito abatement efforts was particularly notable. About 53 percent of the variation of the location of WNV clusters was explained by these factors.ConclusionThe models developed indicate that differential mosquito abatement efforts are especially important risk factors, even when controlling for key environmental factors. Human population characteristics play a role in risk that is measurable in this ecological study but would require further research to associate causality with risk. The analysis of spatial clusters of case incidence indicates that this approach provides more insight into the focal nature of differential risk factors that tend to be associated with WNV than an analysis of all individual cases.
Journal of Medical Entomology | 2008
Gabriel L. Hamer; Uriel Kitron; Jeffrey D. Brawn; Scott R. Loss; Marilyn O. Ruiz; Tony L. Goldberg; Edward D. Walker
Abstract Host-feeding patterns of Culex pipiens L. collected in southwest suburban Chicago in 2005 were studied using polymerase chain reaction (PCR) and DNA sequencing techniques. Culex spp. mosquitoes, most identified to Cx. pipiens and the remainder to Cx. restuans by PCR, had fed on 18 avian species, most commonly American robin (Turdus migratorious), house sparrow (Passer domesticus), and mourning dove (Zenaida macroura). Additional blood meals were derived from four mammal species, primarily humans and raccoons (Procyon lotor). During a West Nile virus (WNV) epidemic in 2005, West Nile virus (WNV) RNA was detected in heads and thoraces of five Cx. pipiens (n = 335, 1.5%) using quantitative PCR. The hosts of these virus-infected, blood-fed mosquitoes included two American robins, one house sparrow, and one human. This is the first report of a WNV-infected Cx. pipiens mosquito collected during an epidemic of WNV that was found to have bitten a human. These results fulfill a criterion for incrimination of Cx. pipiens as a bridge vector.
Journal of the Royal Society Interface | 2013
Robert C. Reiner; T. Alex Perkins; Christopher M. Barker; Tianchan Niu; Luis Fernando Chaves; Alicia M. Ellis; Dylan B. George; Arnaud Le Menach; Juliet R. C. Pulliam; Donal Bisanzio; Caroline O. Buckee; Christinah Chiyaka; Derek A. T. Cummings; Andres J. Garcia; Michelle L. Gatton; Peter W. Gething; David M. Hartley; Geoffrey L. Johnston; Eili Y. Klein; Edwin Michael; Steven W. Lindsay; Alun L. Lloyd; David M Pigott; William K. Reisen; Nick W. Ruktanonchai; Brajendra K. Singh; Andrew J. Tatem; Uriel Kitron; Simon I. Hay; Thomas W. Scott
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Parasitology | 2007
Ricardo E. Gürtler; María Carla Cecere; Marta A. Lauricella; M.V. Cardinal; Uriel Kitron; Joel E. Cohen
The reservoir capacity of domestic cats and dogs for Trypanosoma cruzi infection and the host-feeding patterns of domestic Triatoma infestans were assessed longitudinally in 2 infested rural villages in north-western Argentina. A total of 86 dogs and 38 cats was repeatedly examined for T. cruzi infection by serology and/or xenodiagnosis. The composite prevalence of infection in dogs (60%), but not in cats, increased significantly with age and with the domiciliary density of infected T. infestans. Dogs and cats had similarly high forces of infection, prevalence of infectious hosts (41-42%), and infectiousness to bugs at a wide range of infected bug densities. The infectiousness to bugs of seropositive dogs declined significantly with increasing dog age and was highly aggregated. Individual dog infectiousness to bugs was significantly autocorrelated over time. Domestic T. infestans fed on dogs showed higher infection prevalence (49%) than those fed on cats (39%), humans (38%) or chickens (29%) among 1085 bugs examined. The basic reproduction number of T. cruzi in dogs was at least 8.2. Both cats and dogs are epidemiologically important sources of infection for bugs and householders, dogs nearly 3 times more than cats.
Emerging Infectious Diseases | 2015
Cristiane Wanderley Cardoso; Igor Adolfo Dexheimer Paploski; Mariana Kikuti; Moreno Souza Rodrigues; Monaise Madalena Oliveira e Silva; Gubio Soares Campos; Silvia Ines Sardi; Uriel Kitron; Mitermayer G. Reis; Guilherme S. Ribeiro
To the Editor: Zika virus (ZIKV) has been recognized as an emerging mosquito-borne flavivirus since outbreaks were reported from Yap Island in 2007 (1), French Polynesia in 2013 (2), and Cook Island and New Caledonia in 2014 (3). It has joined dengue virus (DENV) and chikungunya virus (CHIKV) as global public health threats (4). ZIKV infection typically causes a self-limited dengue-like illness characterized by exanthema, low-grade fever, conjunctivitis, and arthralgia, and an increase in rates of Guillain-Barre syndrome have been observed during ZIKV outbreaks (5). In Brazil, clusters of cases of acute exanthematous illness have been reported from various regions since late 2014, and in April 2015, ZIKV was identified as the etiologic agent (6). In May 2015, the Brazilian Ministry of Health recognized circulation of ZIKV in Brazil. We report epidemiologic findings for an ongoing outbreak of acute exanthematous illness in the population of Salvador, the third largest city in Brazil. The Salvador Epidemiologic Surveillance Office (ESO) was first alerted to cases of an acute exanthematous illness early in 2015. Reporting of cases increased during March, and in April the ESO established 10 public emergency health centers in Salvador as sentinel units for systematic surveillance of patients with acute exanthematous illness of unknown cause. The units searched retrospectively for suspected cases by review of medical charts of patients treated since February 15, continued with prospective case detection, and submitted weekly reports of identified cases to the ESO. During February 15−June 25, a total of 14,835 cases of an indeterminate acute exanthematous illness were reported from the 12 sanitary districts in Salvador. The overall attack rate was 5.5 cases/1,000 persons (4.6 cases/1,000 men and 6.3 cases/1,000 women, 8.2 cases/1,000 children 40 years of age). The epidemic curve peaked in the first week of May, which was 1 week after molecular diagnosis of ZIKV in 8 patients residing ≈50 km from Salvador and during a period of intense media coverage of the outbreak (Figure) (6). Reporting of suspected dengue cases in Salvador did not vary substantially from that in other years and was >5 times lower: 2,630 cases, of which 165/366 (45.1%) were positive for dengue IgM, 20/590 (3.4%) positive for dengue virus nonstructural protein 1, and 1/11 (9.1%) positive for dengue virus by reverse transcription PCR (Figure). During the same period, 58 cases of suspected chikungunya were reported and 24 patients with suspected Guillain-Barre syndrome were hospitalized. Figure Reported cases of indeterminate acute exanthematous illness and suspected dengue fever in Salvador, Brazil, by date of medical care, February 15−June 25, 2015. Letters indicate specific events. A) February 15: systematic reporting of cases of ... The median age of case-patients was 26 years (interquartile range 11–39 years), but all age groups were affected, which is a pattern typical of spread of new microorganisms (or subtypes) in a susceptible population. Median duration of symptoms at time of medical attention was 1 day (interquartile range 0–3 days). All patients had exanthema and most (12,711/14,093 [90.2%]) had pruritus. Fever (4,841/13,786, 35.1%), arthralgia (278/1,048 [26.5%]), headache (3,446/13,503 [25.6%]), and myalgia (223/1,033 [21.6%]) were less common. Serum samples from some patients were examined for rubella IgM (2/200, 1.0% positive), rubella IgG (15/18, 83.3% positive), measles IgM (0/11, 0% positive), dengue nonstructural protein 1 (3/185, 1.6% positive), dengue IgM (17/80, 21.3% positive), parvovirus B19 IgM (0/1, 0% positive), and parvovirus B19 IgG (1/1, 100% positive). Reverse transcription PCR was performed on 58 serum samples stored at −20°C and confirmed ZIKV in 3 (5.2%) samples, CHIKV in 3 (5.2%) samples, DENV type 3 in 1 (1.7%) sample, and DENV type 4 in 1 (1.7%) sample. Identification of ZIKV, CHIKV and DENV as etiologic agents of acute exanthematous illness suggests that these 3 Aedes spp. mosquito−transmitted viruses were co-circulating in Salvador and highlights the challenge in clinically differentiating these infections during outbreaks. Although we were not able to determine the specific incidence of each virus, the low frequency of fever and arthralgia, which are indicators of dengue and chikungunya, point to ZIKV as the probable cause of several of the reported cases. Furthermore, laboratory-confirmed cases of infection with ZIKV were simultaneously identified in other cities within metropolitan Salvador (6,7) and in other states in Brazil (8). Low diagnosis of ZIKV infection is likely because viremia levels among infected patients appear to be low (9). The spread of ZIKV represents an additional challenge for public health systems, particularly because of the risk for concurrent transmission of DENV and CHIKV by the same vectors, Ae. aegypti and Ae. albopictus mosquitoes, which are abundant throughout tropical and subtropical regions. To date, the largest outbreak of chikungunya in Brazil occurred in 2014 in Feira de Santana, Bahia, ≈100 km from Salvador, where dengue is also prevalent (10). This report illustrates the potential for explosive simultaneous outbreaks of ZIKV, CHIKV, and DENV in the Western Hemisphere and the increasing public health effects of Aedes spp. mosquitoes as vectors. The apparent increase in reports of Guillain-Barre syndrome during the outbreak deserves further investigation to elucidate whether this syndrome is associated with ZIKV infection. Public health authorities in Brazil and neighboring countries should plan accordingly.