Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uros Marusic is active.

Publication


Featured researches published by Uros Marusic.


Journal of Applied Physiology | 2016

Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 wk of bed rest and recovery.

Rado Pišot; Uros Marusic; Gianni Biolo; Sara Mazzucco; Stefano Lazzer; Bruno Grassi; Carlo Reggiani; Luana Toniolo; Angelina Passaro; Marco V. Narici; Shahid Mohammed; Joern Rittweger; Mladen Gasparini; Mojca Gabrijelčič Blenkuš; Boštjan Šimunič

This investigation aimed to compare the response of young and older adult men to bed rest (BR) and subsequent rehabilitation (R). Sixteen older (OM, age 55-65 yr) and seven young (YM, age 18-30 yr) men were exposed to a 14-day period of BR followed by 14 days of R. Quadriceps muscle volume (QVOL), force (QF), and explosive power (QP) of leg extensors; single-fiber isometric force (Fo); peak aerobic power (V̇o2peak); gait stride length; and three metabolic parameters, Matsuda index of insulin sensitivity, postprandial lipid curve, and homocysteine plasma level, were measured before and after BR and after R. Following BR, QVOL was smaller in OM (-8.3%) than in YM (-5.7%,P= 0.031); QF (-13.2%,P= 0.001), QP (-12.3%,P= 0.001), and gait stride length (-9.9%,P= 0.002) were smaller only in OM. Fo was significantly smaller in both YM (-32.0%) and OM (-16.4%) without significant differences between groups. V̇o2peakdecreased more in OM (-15.3%) than in YM (-7.6%,P< 0.001). Instead, the Matsuda index fell to a greater extent in YM than in OM (-46.0% vs. -19.8%, respectively,P= 0.003), whereas increases in postprandial lipid curve (+47.2%,P= 0.013) and homocysteine concentration (+26.3%,P= 0.027) were observed only in YM. Importantly, after R, the recovery of several parameters, among them QVOL, QP, and V̇o2peak, was not complete in OM, whereas Fo did not recover in either age group. The results show that the effect of inactivity on muscle mass and function is greater in OM, whereas metabolic alterations are greater in YM. Furthermore, these findings show that the recovery of preinactivity conditions is slower in OM.


European Journal of Sport Science | 2014

The brain in micro- and hypergravity: The effects of changing gravity on the brain electrocortical activity

Uros Marusic; Romain Meeusen; Rado Pišot; Voyko Kavcic

Abstract Understanding the effects of increased and decreased gravity on central nervous system is essential for developing proper physical and cognitive countermeasures to assure safe and effective space missions and human survival in space. This short review covers the available literature on the brain electrocortical activity effects of decreased and increased gravitational force comparing to the 1g Earth conditions. Among all neuroimaging methods such as functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), diffusion tensor imaging (DTI), the electroencephalography (EEG) was found to be suitable method to monitor brain electrocortical activity in the extreme environments. Due to complexity and high cost of space flight missions, ground-based models have been employed to simulate microgravity effects on human body. Surprisingly, there is very limited number of publications reporting gravity-dependent EEG spectral changes. With increased gravity there are initially increased EEG activity in higher frequencies and at around 4g appears loss of consciousness with accompanying slowing of EEG due to hypoxia. In microgravity, the most prevalent changes in EEG are faster frequencies such as alpha and beta. The results from simulated microgravity (bed rest) are pointing to changes in theta and alpha, representing signs of cortical inhibition. The changes in EEG activity in space flight are attributed to a decreased sensorimotor input while in parabolic flights short and fast transitions from hyper to microgravity presumably reflect lower arousal levels and emotional processes in microgravity. Thus, based on limited research about gravity-related changes in EEG from different environments it is difficult to draw any unequivocal conclusions. Additional systematic studies about electrocortical activity in space and parabolic flights, as well as longer bed rest studies are needed in order to advance knowledge about brain functioning in extreme conditions such as space flights.


Aging Neuropsychology and Cognition | 2018

Computerized cognitive training during physical inactivity improves executive functioning in older adults

Uros Marusic; Bruno Giordani; Scott D. Moffat; Mojca Petrič; Petra Dolenc; Rado Pišot; Voyko Kavcic

ABSTRACT The hippocampus is closely tied to spatial navigation, a central component in cognitive functioning, and critically involved in age-associated cognitive decline and dementia. This study evaluated a novel, cognitive computerized spatial navigation training (CSNT) program targeting the hippocampus, with expectation of mitigating possible cognitive decline with bed rest (BR). During a 14-day BR study with 16 healthy, older men (mean age = 60 ± 3, range = 55–65 years), half received CSNT for 12 days in 50-min sessions and half were controls (watching documentaries). This design uniquely controlled diet, sleep, and other personal and environmental activities. Although there were no cognitive declines in controls post-BR, CSNT participants demonstrated significant increases in executive/attention ability and processing speed, and continued spatial navigation testing showed improvement to 400 days post-BR. This intervention may prove useful to mitigate cognitive declines known to occur in long periods of immobilization and could have broader implications in protecting against age-related cognitive decline.


Psychology and Aging | 2015

Computerized spatial navigation training during 14 days of bed rest in healthy older adult men: Effect on gait performance.

Uros Marusic; Voyko Kavcic; Bruno Giordani; Mitja Gerževič; Romain Meeusen; Rado Pišot

Prolonged physical inactivity or bed rest (BR) due to illness or other factors can result in significant declines in physical health and even cognitive functions. Based on random selection, 7 healthy older adult men received computerized spatial navigation training, while 8 served as active controls during 14-day BR. Greater post-BR declines were seen in normal and complex (dual-task) walking for the control as compared to intervention group, suggesting that computerized spatial navigation training can successfully moderate detrimental BR effects. Findings underline the generalization of cognitive-based intervention to the motor domain and potentially support their use to supplement BR interventions (e.g., exercise and nutrition).


Journal of Applied Physiology | 2016

Age-related differences in plasma BDNF levels after prolonged bed rest

Cecilia Soavi; Uros Marusic; Juana M. Sanz; Mario Luca Morieri; Edoardo Dalla Nora; Boštjan Šimunič; Rado Pišot; Giovanni Zuliani; Angelina Passaro

Brain-derived neurotrophic factor (BDNF) is a member of the family of neurotrophins and has been implicated in brain resistance to insults. Murine studies have demonstrated increased hippocampal concentration after acute immobilization and decreased concentration after chronic immobilization. In humans, chronic stress and sedentary lifestyle result in decreased plasma BDNF levels, but there no data exist regarding acute immobilization. The aim of our study was to evaluate age-related responses [comparing 7 younger subjects (age 23 ± 3 yr) and 8 older subjects (age 60 ± 4 yr)] of plasma BDNF before (baseline data collection, BDC) and after 14 days (BR14) of horizontal bed rest (BR). At BDC, BDNF levels were not different between the two groups (P = 0.101), although at BR14, BDNF levels were higher in older subjects (62.02 ± 18.31) than in younger subjects (34.36 ± 15.24 pg/ml) (P = 0.002). A general linear model for repeated measures showed a significant effect of BR on BDNF (P = 0.002). The BDC BDNF levels correlated with fat-free mass in both populations (ALL) (R = 0.628, P = 0.012), (older, R = 0.753, P = 0.031; younger, R = 0.772, P = 0.042), and with total cholesterol in ALL (R = 0.647, P = 0.009) and older study subjects (R = 0.805, P = 0.016). At BR14, BDNF correlated with total cholesterol (R = 0.579, P = 0.024) and age (R = 0.647, P = 0.009) in ALL. With an increase in age, the brain could become naturally less resistant to acute stressors, including the detrimental effects of prolonged bed rest, and thus the increase in BDNF in the older study group might reflect a protective overshooting of the brain to counteract the negative effects in such conditions.


Clinical Interventions in Aging | 2015

effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: A pilot study

Nandu Goswami; Voyko Kavcic; Uros Marusic; Boštjan Šimunič; Andreas Rössler; Helmut Hinghofer-Szalkay; Rado Pišot

We investigated the effects of bed rest (BR) immobilization, with and without computerized cognitive training with virtual spatial navigation task (CCT), on vascular endothelium on older subjects. The effects of 14-day BR immobilization in healthy older males (n=16) of ages 53–65 years on endothelial function were studied using EndoPAT®, a noninvasive and user-independent method. From the group of 16 older men, 8 randomly received CCT during the BR, using virtual navigation tasks in a virtual environment with joystick device. In all the cases, EndoPAT assessments were done at pre- and post-BR immobilization as well as following 28 days of ambulatory recovery. The EndoPAT index increased from 1.53±0.09 (mean ± standard error of the mean) at baseline to 1.61±0.16 following immobilization (P=0.62) in the group with CCT. The EndoPAT index decreased from 2.06±0.13 (mean ± standard error of the mean) at baseline to 1.70±0.09 at the last day of BR study, day 14 (BR14) (P=0.09) in the control group. Additionally, there were no statistically significant differences between BR14 and at 28 days of follow-up (rehabilitation program) (R28). Our results show a trend of immobilization in older persons affecting the vasoconstrictory endothelial response. As the control subjects had a greater increase in EndoPAT index after R28 (+0.018) compared to subjects who had cognitive training (+0.11) (calculated from the first day of BR study), it is possible that cognitive training during BR does not improve endothelial function but rather contributes to slowing down the impairment of endothelial function. Finally, our results also show that EndoPAT may be a useful noninvasive tool to assess the vascular reactivity.


AGING | 2017

Computerized cognitive training and brain derived neurotrophic factor during bed rest: Mechanisms to protect individual during acute stress

Angelina Passaro; Cecilia Soavi; Uros Marusic; Enrico Rejc; Juana M. Sanz; Mario Luca Morieri; Edoardo Dalla Nora; Voyko Kavcic; Marco V. Narici; Carlo Reggiani; Gianni Biolo; Giovanni Zuliani; Stefano Lazzer; Rado Pišot

Acute stress, as bed rest, was shown to increase plasma level of the neurotrophin brain-derived neurotrophic factor (BDNF) in older, but not in young adults. This increase might represent a protective mechanism towards acute insults in aging subjects. Since computerized cognitive training (CCT) is known to protect brain, herein we evaluated the effect of CCT during bed rest on BDNF, muscle mass, neuromuscular function and metabolic parameters. The subjects that underwent CCT did not show an increase of BDNF after bed rest, and showed an anti-insular modification pattern in metabolism. Neuromuscular function parameters, already shown to beneficiate from CCT, negatively correlated with BDNF in research participants undergoing CCT, while positively correlated in the control group. In conclusion, BDNF increase can be interpreted as a standardized protective mechanism taking place whenever an insult occurs; it gives low, but consistent preservation of neuromuscular function. CCT, acting as an external protective mechanism, seems to modify this standardized response, avoiding BDNF increase or possibly modifying its time course. Our results suggest the possibility of differential neuroprotective mechanisms among ill and healthy individuals, and the importance of timing in determining the effects of protective mechanisms.


European Journal of Sport Science | 2018

Non-physical approaches to counteract age-related functional deterioration: Applications for rehabilitation and neural mechanisms

Uros Marusic; Sidney Grosprêtre

Abstract Normal and pathological ageing are associated with several motor impairments that reduce quality of life and represent a general challenge for public healthcare systems. Consequently, over the past decades, many scientists and physiotherapists dedicated their research to the development and improvement of safe and costless methods to counteract the progressive decline of motor functions with age. The urgency of finding new and easy to implement methods is even more paramount in case of acute pathologies (e.g. stroke or hip surgery). The frailty of older population makes it difficult or even impossible to use traditional physical therapy at an early stage after the occurrence of a pathology. To that purpose, non-physical approaches such as cognitive training (e.g. memory, attention training) and mental techniques (e.g. motor imagery) have grown in popularity for the elderly. Such methods, involving individual and/or group exercises, have shown particular effects on increasing or maintaining cognitive functions, as well as physical performances. Improving the motor function (especially in older age) requires an improvement of motor execution, i.e. the pathway from the brain motor areas to the muscle but also higher cognitive control. The present work reviews different non-physical interventions that can be used as a complementary approach by asymptomatic or frail older adults, and the effects thereof on functional performance. The use of cognitive training or motor imagery protocols is recommended when physical practice is limited or not possible. Finally, insights into the underlying neurophysiological mechanisms are proposed.


Psychopharmacology | 2017

Electro-physiological changes in the brain induced by caffeine or glucose nasal spray.

K. De Pauw; Bart Roelands; J. Van Cutsem; Uros Marusic; Tine Torbeyns; Romain Meeusen


Sports Medicine | 2018

Effects and Dose–Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis

Armin Paravlic; Maamer Slimani; David Tod; Uros Marusic; Zoran Milanovic; Rado Pišot

Collaboration


Dive into the Uros Marusic's collaboration.

Top Co-Authors

Avatar

Rado Pišot

University of Primorska

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romain Meeusen

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge