Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Urs Frey is active.

Publication


Featured researches published by Urs Frey.


Frontiers in Neuroscience | 2015

Revealing neuronal function through microelectrode array recordings.

Marie Engelene J. Obien; Kosmas Deligkaris; Torsten Bullmann; Douglas J. Bakkum; Urs Frey

Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.


Biosensors and Bioelectronics | 2009

Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices

Urs Frey; Ulrich Egert; Flavio Heer; Sadik Hafizovic; Andreas Hierlemann

There is an enduring quest for technologies that provide - temporally and spatially - highly resolved information on electric neuronal or cardiac activity in functional tissues or cell cultures. Here, we present a planar high-density, low-noise microelectrode system realized in microelectronics technology that features 11,011 microelectrodes (3,150 electrodes per mm(2)), 126 of which can be arbitrarily selected and can, via a reconfigurable routing scheme, be connected to on-chip recording and stimulation circuits. This device enables long-term extracellular electrical-activity recordings at subcellular spatial resolution and microsecond temporal resolution to capture the entire dynamics of the cellular electrical signals. To illustrate the device performance, extracellular potentials of Purkinje cells (PCs) in acute slices of the cerebellum have been analyzed. A detailed and comprehensive picture of the distribution and dynamics of action potentials (APs) in the somatic and dendritic regions of a single cell was obtained from the recordings by applying spike sorting and spike-triggered averaging methods to the collected data. An analysis of the measured local current densities revealed a reproducible sink/source pattern within a single cell during an AP. The experimental data substantiated compartmental models and can be used to extend those models to better understand extracellular single-cell potential patterns and their contributions to the population activity. The presented devices can be conveniently applied to a broad variety of biological preparations, i.e., neural or cardiac tissues, slices, or cell cultures can be grown or placed directly atop of the chips for fundamental mechanistic or pharmacological studies.


IEEE Journal of Solid-state Circuits | 2010

Switch-Matrix-Based High-Density Microelectrode Array in CMOS Technology

Urs Frey; Jan Sedivy; Flavio Heer; Rene Pedron; Marco Ballini; Jan Mueller; Douglas J. Bakkum; Sadik Hafizovic; Francesca Dalia Faraci; Frauke Greve; K.-U. Kirstein; Andreas Hierlemann

We report on a CMOS-based microelectrode array (MEA) featuring 11, 011 metal electrodes and 126 channels, each of which comprises recording and stimulation electronics, for extracellular bidirectional communication with electrogenic cells, such as neurons or cardiomyocytes. The important features include: (i) high spatial resolution at (sub)cellular level with 3150 electrodes per mm2 (electrode diameter 7 ¿m, electrode pitch 18 ¿m); (ii) a reconflgurable routing of the recording sites to the 126 channels; and (iii) low noise levels.


Nature Communications | 2013

Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites

Douglas J. Bakkum; Urs Frey; Milos Radivojevic; Thomas L. Russell; Jan Müller; Michele Fiscella; Hirokazu Takahashi; Andreas Hierlemann

Axons are traditionally considered stable transmission cables, but evidence of the regulation of action potential propagation demonstrates that axons may have more important roles. However, their small diameters render intracellular recordings challenging, and low-magnitude extracellular signals are difficult to detect and assign. Better experimental access to axonal function would help to advance this field. Here we report methods to electrically visualize action potential propagation and network topology in cortical neurons grown over custom arrays, which contain 11,011 microelectrodes and are fabricated using complementary metal oxide semiconductor technology. Any neuron lying on the array can be recorded at high spatio-temporal resolution, and simultaneously precisely stimulated with little artifact. We find substantial velocity differences occurring locally within single axons, suggesting that the temporal control of a neurons output may contribute to neuronal information processing.


Proceedings of the IEEE | 2011

Growing Cells Atop Microelectronic Chips: Interfacing Electrogenic Cells In Vitro With CMOS-Based Microelectrode Arrays

Andreas Hierlemann; Urs Frey; Sadik Hafizovic; Flavio Heer

Complementary semiconductor-metal-oxide (CMOS) technology is a very powerful technology that can be more or less directly interfaced to electrogenic cells, like heart or brain cells in vitro. To this end, the cells are cultured directly atop the CMOS chips, which usually undergo dedicated postprocessing to obtain a reliable bidirectional interface via noble-metal microelectrodes or high-k dielectrics. The big advantages of using CMOS integrated circuits (ICs) include connectivity, the possibility to address a large number of microelectrodes on a tiny chip, and signal quality, the possibility to condition small signals right at the spot of their generation. CMOS will be demonstrated to constitute an enabling technology that opens a route to high-spatio-temporal-resolution and low-noise electrophysiological recordings from a variety of biological preparations, such as brain slices, or cultured cardiac and brain cells. The recording technique is extracellular and noninvasive, and the CMOS chips do not leak out any toxic compounds, so that the cells remain viable for extended times. In turn, the CMOS chips have been demonstrated to survive several months of culturing while being fully immersed in saline solution and being exposed to cellular metabolic products. The latter requires dedicated passivation and packaging techniques as will be shown. Fully integrated, monolithic microelectrode systems, which feature large numbers of tightly spaced microelectrodes and the associated circuitry units for bidirectional interaction (stimulation and recording), will be in the focus of this review. The respective dense microelectrode arrays (MEAs) with small pixels enable subcellular-resolution investigation of regions of interest in, e.g., neurobiological preparations, and, at the same time, the large number of electrodes allows for studying the activity of entire neuronal networks . Application areas include neuroscience, as the devices enable fundamental neurophysiological insights at the cellular and circuit level, as well as medical diagnostics and pharmacology.


Journal of Neuroscience Methods | 2007

A CMOS-based microelectrode array for interaction with neuronal cultures

Sadik Hafizovic; Flavio Heer; T. Ugniwenko; Urs Frey; Axel Blau; Christiane Ziegler; Andreas Hierlemann

We report on the system integration of a CMOS chip that is capable of bidirectionally communicating (stimulation and recording) with electrogenic cells such as neurons or cardiomyocytes and that is targeted at investigating electrical signal propagation within cellular networks in vitro. The overall system consists of three major subunits: first, the core component is a 6.5 mm x 6.5 mm CMOS chip, on top of which the cells are cultured. It features 128 bidirectional electrodes, each equipped with dedicated analog filters and amplification stages and a stimulation buffer. The electrodes are sampled at 20 kHz with 8-bit resolution. The measured input-referred circuitry noise is 5.9 microV root mean square (10 Hz to 100 kHz), which allows to reliably detect the cell signals ranging from 1 mVpp down to 40 microVpp. Additionally, temperature sensors, a digital-to-analog converter for stimulation, and a digital interface for data transmission are integrated. Second, there is a reconfigurable logic device, which provides chip control, event detection, data buffering and an USB interface, capable of processing the 2.56 million samples per second. The third element includes software that is running on a standard PC performing data capturing, processing, and visualization. Experiments involving the stimulation of neurons with two different spatio-temporal patterns and the recording of the triggered spiking activity have been carried out. The response patterns have been successfully classified (83% correct) with respect to the different stimulation patterns. The advantages over current microelectrode arrays, as has been demonstrated in the experiments, include the capability to stimulate (voltage stimulation, 8 bit, 60 kHz) spatio-temporal patterns on arbitrary sets of electrodes and the fast stimulation reset mechanism that allows to record neuronal signals on a stimulating electrode 5 ms after stimulation (instantaneously on all other electrodes). Other advantages of the overall system include the small number of needed electrical connections due to the digital interface and the short latency time that allows to initiate a stimulation less than 2 ms after the detection of an action potential in closed-loop configurations.


IEEE Journal of Solid-state Circuits | 2014

A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro

Marco Ballini; Jan Müller; Paolo Livi; Yihui Chen; Urs Frey; Alexander Stettler; Amir Shadmani; Vijay Viswam; Ian L. Jones; David Jäckel; Milos Radivojevic; Marta K. Lewandowska; Wei Gong; Michele Fiscella; Douglas J. Bakkum; Flavio Heer; Andreas Hierlemann

To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 2.10 mm ) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μV in the action-potential band (300 Hz-10 kHz) and 5.4 μV in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.


Journal of Neurophysiology | 2012

Applicability of independent component analysis on high-density microelectrode array recordings.

David Jäckel; Urs Frey; Michele Fiscella; Felix Franke; Andreas Hierlemann

Emerging complementary metal oxide semiconductor (CMOS)-based, high-density microelectrode array (HD-MEA) devices provide high spatial resolution at subcellular level and a large number of readout channels. These devices allow for simultaneous recording of extracellular activity of a large number of neurons with every neuron being detected by multiple electrodes. To analyze the recorded signals, spiking events have to be assigned to individual neurons, a process referred to as spike sorting. For a set of observed signals, which constitute a linear mixture of a set of source signals, independent component (IC) analysis (ICA) can be used to demix blindly the data and extract the individual source signals. This technique offers great potential to alleviate the problem of spike sorting in HD-MEA recordings, as it represents an unsupervised method to separate the neuronal sources. The separated sources or ICs then constitute estimates of single-neuron signals, and threshold detection on the ICs yields the sorted spike times. However, it is unknown to what extent extracellular neuronal recordings meet the requirements of ICA. In this paper, we evaluate the applicability of ICA to spike sorting of HD-MEA recordings. The analysis of extracellular neuronal signals, recorded at high spatiotemporal resolution, reveals that the recorded data cannot be modeled as a purely linear mixture. As a consequence, ICA fails to separate completely the neuronal signals and cannot be used as a stand-alone method for spike sorting in HD-MEA recordings. We assessed the demixing performance of ICA using simulated data sets and found that the performance strongly depends on neuronal density and spike amplitude. Furthermore, we show how postprocessing techniques can be used to overcome the most severe limitations of ICA. In combination with these postprocessing techniques, ICA represents a viable method to facilitate rapid spike sorting of multidimensional neuronal recordings.


Nucleic Acids Research | 2008

A synthetic mammalian electro-genetic transcription circuit

Wilfried Weber; Stefan Luzi; Maria Karlsson; Carlota Diaz Sanchez-Bustamante; Urs Frey; Andreas Hierlemann; Martin Fussenegger

Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.


international solid-state circuits conference | 2007

An 11k-Electrode 126-Channel High-Density Microelectrode Array to Interact with Electrogenic Cells

Urs Frey; Flavio Heer; Rene Pedron; Sadik Hafizovic; Frauke Greve; Jan Sedivy; K.-U. Kirstein; Andreas Hierlemann

A microelectrode array allows an arbitrary group of 126 electrodes to be selected from a total of 11,016 in order to do cell or neural recordings from areas of interest with 18 mum spatial resolution and 2.4 muv input-referred noise. Signals are amplified by 0 to 80dB, bandpass filtered (0.3 to 4kHz), and finally digitized (20kS/s, 8b). Example recordings from acute brain slices are shown

Collaboration


Dive into the Urs Frey's collaboration.

Researchain Logo
Decentralizing Knowledge