Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ursula B. Kaiser is active.

Publication


Featured researches published by Ursula B. Kaiser.


The New England Journal of Medicine | 2008

A GPR54-activating mutation in a patient with central precocious puberty.

Milena Gurgel Teles; Suzy D. C. Bianco; Vinicius Nahime Brito; Ericka B. Trarbach; Wendy Kuohung; Shuyun Xu; Stephanie B. Seminara; Berenice B. Mendonca; Ursula B. Kaiser; Ana Claudia Latronico

Gonadotropin-dependent, or central, precocious puberty is caused by early maturation of the hypothalamic-pituitary-gonadal axis. In girls, this condition is most often idiopathic. Recently, a G protein-coupled receptor, GPR54, and its ligand, kisspeptin, were described as an excitatory neuroregulator system for the secretion of gonadotropin-releasing hormone (GnRH). In this study, we have identified an autosomal dominant GPR54 mutation--the substitution of proline for arginine at codon 386 (Arg386Pro)--in an adopted girl with idiopathic central precocious puberty (whose biologic family was not available for genetic studies). In vitro studies have shown that this mutation leads to prolonged activation of intracellular signaling pathways in response to kisspeptin. The Arg386Pro mutant appears to be associated with central precocious puberty.


The New England Journal of Medicine | 2013

Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3

Ana Paula Abreu; Andrew Dauber; Delanie B. Macedo; Sekoni D. Noel; Vinicius Nahime Brito; John C. Gill; Priscilla Cukier; Iain R. Thompson; Víctor M. Navarro; Priscila C. Gagliardi; Tânia Rodrigues; Cristiane Kochi; Carlos Alberto Longui; Dominique Beckers; Francis de Zegher; Luciana R. Montenegro; Berenice B. Mendonca; Rona S. Carroll; Joel N. Hirschhorn; Ana Claudia Latronico; Ursula B. Kaiser

BACKGROUND The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Early activation of the hypothalamic-pituitary-gonadal axis results in central precocious puberty. The timing of pubertal development is driven in part by genetic factors, but only a few, rare molecular defects associated with central precocious puberty have been identified. METHODS We performed whole-exome sequencing in 40 members of 15 families with central precocious puberty. Candidate variants were confirmed with Sanger sequencing. We also performed quantitative real-time polymerase-chain-reaction assays to determine levels of messenger RNA (mRNA) in the hypothalami of mice at different ages. RESULTS We identified four novel heterozygous mutations in MKRN3, the gene encoding makorin RING-finger protein 3, in 5 of the 15 families; both sexes were affected. The mutations included three frameshift mutations, predicted to encode truncated proteins, and one missense mutation, predicted to disrupt protein function. MKRN3 is a paternally expressed, imprinted gene located in the Prader-Willi syndrome critical region (chromosome 15q11-q13). All affected persons inherited the mutations from their fathers, a finding that indicates perfect segregation with the mode of inheritance expected for an imprinted gene. Levels of Mkrn3 mRNA were high in the arcuate nucleus of prepubertal mice, decreased immediately before puberty, and remained low after puberty. CONCLUSIONS Deficiency of MKRN3 causes central precocious puberty in humans. (Funded by the National Institutes of Health and others.).


The Journal of Clinical Endocrinology and Metabolism | 2010

TAC3/TACR3 Mutations Reveal Preferential Activation of Gonadotropin-Releasing Hormone Release by Neurokinin B in Neonatal Life Followed by Reversal in Adulthood

Elena Gianetti; Cintia Tusset; Sekoni D. Noel; Margaret G. Au; Andrew A. Dwyer; Virginia A. Hughes; Ana Paula Abreu; Jessica Carroll; Ericka B. Trarbach; Leticia Ferreira Gontijo Silveira; Elaine Maria Frade Costa; Berenice B. Mendonca; Margaret de Castro; Adriana Lofrano; Janet E. Hall; Erol Bolu; Metin Ozata; Richard Quinton; John K. Amory; Susan E. Stewart; Wiebke Arlt; Trevor R. Cole; William F. Crowley; Ursula B. Kaiser; Ana Claudia Latronico; Stephanie B. Seminara

CONTEXT Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. OBJECTIVE A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. DESIGN AND SETTING The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. PATIENTS OR OTHER PARTICIPANTS 345 probands, 18 family members, and 292 controls were studied. INTERVENTION Reproductive phenotypes throughout reproductive life and before and after therapy were examined. MAIN OUTCOME MEASURE Rare sequence variants in TAC3/TACR3 were detected. RESULTS In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. CONCLUSIONS Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time.


International Journal of Radiation Oncology Biology Physics | 1998

Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas.

Michihide Mitsumori; Dennis C. Shrieve; Eben Alexander; Ursula B. Kaiser; Gary E. Richardson; Peter McL. Black; Jay S. Loeffler

PURPOSE To retrospectively evaluate the initial clinical results of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) for pituitary adenomas with regard to tumor and hormonal control and adverse effects of the treatment. SUBJECTS AND METHODS Forty-eight patients with pituitary adenoma who underwent SRS or SRT between September 1989 and September 1995 were analyzed. Of these, 18 received SRS and 30 received SRT. The median tumor volumes were 1.9 cm3 for SRS and 5.7 cm3 for SRT. Eleven of the SRS and 18 of the SRT patients were hormonally active at the time of the initial diagnosis. Four of the SRS and none of the SRT patients had a history of prior radiation therapy. Both SRS and SRT were performed using a dedicated stereotactic 6-MV linear accelerator (LINAC). The dose and normalization used for the SRS varied from 1000 cGy at 85% of the isodose line to 1500 cGy at 65% of the isodose line. For SRT patients, a total dose of 4500 cGy at 90% or 95% of the isodose line was delivered in 25 fractions of 180 cGy daily doses. RESULTS Disease control-The three year tumor control rate was 91.1% (100% for SRS and 85.3% for SRT). Normalization of the hormonal abnormality was achieved in 47% of the 48 patients (33% for SRS and 54% for SRT). The average time required for normalization was 8.5 months for SRS and 18 months for SRT. Adverse effects-The 3-year rate of freedom from central nervous system adverse effects was 89.7% (72.2% for SRS and 100% for SRT). Three patients who received SRS for a tumor in the cavernous sinus developed a ring enhancement in the temporal lobe as shown by follow-up magnetic resonance imaging. Two of these cases were irreversible and were considered to be radiation necrosis. None of the 48 patients developed new neurocognitive or visual disorders attributable to the irradiation. The incidence of endocrinological adverse effects were similar in the two groups, resulting in 3-year rates of freedom from newly initiated hormonal replacement of 78.4% (77.1% for SRS and 79.9% for SRT). CONCLUSION Considering the relatively high incidence of morbidity observed in the SRS group, we recommend SRT as the primary method of radiation therapy for pituitary tumors. When treating a lesion in the cavernous sinus with SRS, special attention should be paid to dose distribution in the adjacent brain parenchyma. Longer follow-up is necessary before drawing any conclusions about the advantages of these techniques over conventional external beam radiation therapy.


Nature Reviews Endocrinology | 2009

The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism

Suzy D. C. Bianco; Ursula B. Kaiser

Idiopathic hypogonadotropic hypogonadism (IHH) has an incidence of 1–10 cases per 100,000 births. About 60% of patients with IHH present with associated anosmia, also known as Kallmann syndrome, characterized by total or partial loss of olfaction. Many of the gene mutations associated with Kallmann syndrome have been mapped to KAL1 or FGFR1. However, together, these mutations account for only about 15% of Kallmann syndrome cases. More recently, mutations in PROK2 and PROKR2 have been linked to the syndrome and may account for an additional 5–10% of cases. The remaining 40% of patients with IHH have a normal sense of smell. Prior to 2003, the only gene linked to normosmic IHH was the gonadotropin-releasing hormone receptor gene. However, mutations in this receptor are believed to account for only 10% of cases. Subsequently, mutations in KISS1R, TAC3 and TACR3 were identified as causes of normosmic IHH. Certain genes, including PROK2 and FGFR1, are associated with both anosmic and normosmic IHH. Despite recent advances in the field, the genetic causes of the majority of cases of IHH remain unknown. This Review discusses genes associated with hypogonadotropic disorders and the molecular mechanisms by which mutations in these genes may result in IHH.


Biochemical and Biophysical Research Communications | 1992

Isolation and characterization of cDNAs encoding the rat pituitary gonadotropin-releasing hormone receptor

Ursula B. Kaiser; Dayao Zhao; Guemalli R. Cardona; William W. Chin

Rat pituitary cDNAs encoding the full peptide coding sequence of the rat gonadotropin-releasing hormone receptor were isolated and characterized. The deduced amino acid sequence encodes a protein of 327 residues with seven putative transmembrane domains characteristic of the family of G-protein coupled receptors. It is 95% identical at the amino acid level with the mouse gonadotropin-releasing hormone receptor. An mRNA of 4.5 Kb was identified in the rat pituitary, ovary, and testis, and in murine alpha T3 cells. In addition, a larger mRNA species of 5.0-5.5 Kb was present in these rat tissues, and a smaller mRNA species of 1.8 Kb was present in the rat pituitary and ovary, and in alpha T3 cells. The receptor mRNA levels were increased in the female rat pituitary after ovariectomy compared to levels in intact female rats.


The Journal of Clinical Endocrinology and Metabolism | 2010

Mutations of the KISS1 Gene in Disorders of Puberty

Leticia Ferreira Gontijo Silveira; Sekoni D. Noel; Acácio P. Silveira-Neto; Ana Paula Abreu; Vinicius Nahime Brito; Mariza Gerdulo Santos; Suzy D. C. Bianco; Wendy Kuohung; Shuyun Xu; M. Gryngarten; M. E. Escobar; Ivo J. P. Arnhold; Berenice B. Mendonca; Ursula B. Kaiser; Ana Claudia Latronico

CONTEXT Kisspeptin, encoded by the KISS1 gene, is a key stimulatory factor of GnRH secretion and puberty onset. Inactivating mutations of its receptor (KISS1R) cause isolated hypogonadotropic hypogonadism (IHH). A unique KISS1R-activating mutation was described in central precocious puberty (CPP). OBJECTIVE Our objective was to investigate KISS1 mutations in patients with idiopathic CPP and normosmic IHH. PATIENTS Eighty-three children with CPP (77 girls) and 61 patients with IHH (40 men) were studied. The control group consisted of 200 individuals with normal pubertal development. METHODS The promoter region and the three exons of KISS1 were amplified and sequenced. Cells expressing KISS1R were stimulated with synthetic human wild-type or mutant kisspeptin-54 (kp54), and inositol phosphate accumulation was measured. In a second set of experiments, kp54 was preincubated in human serum before stimulation of the cells. RESULTS Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in three unrelated children with idiopathic CPP. Both mutations were absent in 400 control alleles. The p.P74S mutation was identified in the heterozygous state in a boy who developed CPP at 1 yr of age. The p.H90D mutation was identified in the homozygous state in two unrelated girls with CPP. In vitro studies revealed that the capacity of the P74S and H90D mutants to stimulate IP production was similar to the wild type. After preincubation of wild-type and mutant kp54 in human serum, the capacity to stimulate signal transduction was significantly greater for P74S compared with the wild type, suggesting that the p.P74S variant is more stable. Only polymorphisms were found in the IHH group. CONCLUSION Two KISS1 mutations were identified in unrelated patients with idiopathic CPP. The p.P74S variant was associated with higher kisspeptin resistance to degradation in comparison with the wild type, suggesting a role for this mutation in the precocious puberty phenotype.


Cell | 2012

Tet3 CXXC Domain and Dioxygenase Activity Cooperatively Regulate Key Genes for Xenopus Eye and Neural Development

Yufei Xu; Chao Xu; Akiko Kato; Wolfram Tempel; José G. Abreu; Chuanbing Bian; Yeguang Hu; Di Hu; Bin Zhao; Tanja Cerovina; Jianbo Diao; Feizhen Wu; Housheng Hansen He; Qingyan Cui; Erin Clark; Chun Ma; Andrew Barbara; Gert Jan C. Veenstra; Guoliang Xu; Ursula B. Kaiser; X. Shirley Liu; Stephen P. Sugrue; Xi He; Jinrong Min; Yoichi Kato; Yujiang Geno Shi

Ten-Eleven Translocation (Tet) family of dioxygenases dynamically regulates DNA methylation and has been implicated in cell lineage differentiation and oncogenesis. Yet their functions and mechanisms of action in gene regulation and embryonic development are largely unknown. Here, we report that Xenopus Tet3 plays an essential role in early eye and neural development by directly regulating a set of key developmental genes. Tet3 is an active 5mC hydroxylase regulating the 5mC/5hmC status at target gene promoters. Biochemical and structural studies further demonstrate that the Tet3 CXXC domain is critical for specific Tet3 targeting. Finally, we show that the enzymatic activity and CXXC domain are both crucial for Tet3s biological function. Together, these findings define Tet3 as a transcription regulator and reveal a molecular mechanism by which the 5mC hydroxylase and DNA binding activities of Tet3 cooperate to control target gene expression and embryonic development.


Molecular Cell | 2010

Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation.

Rui Fang; Andrew J. Barbera; Yufei Xu; M.S. Rutenberg; Thiago Leonor; Qing Bi; Fei Lan; Pinchao Mei; Guo-Cheng Yuan; Christine G. Lian; Junmin Peng; Dongmei Cheng; Guangchao Sui; Ursula B. Kaiser; Yang Shi; Yujiang Geno Shi

Dynamic histone H3K4 methylation is an important epigenetic component of transcriptional regulation. However, most of our current understanding of this histone mark is confined to the regulation of transcriptional initiation. We now show that human LSD2/KDM1b/AOF1, the human homolog of LSD1, is an H3K4me1/2 demethylase that specifically regulates histone H3K4 methylation within intragenic regions of its target genes. Genome-wide mapping reveals that LSD2 associates predominantly with the gene bodies of actively transcribed genes, but is markedly absent from promoters. Depletion of endogenous LSD2 results in an increase of H3K4me2 as well as a decrease of H3K9me2 at LSD2-binding sites and a consequent dysregulation of target gene transcription. Furthermore, characterization of the LSD2 complex reveals that LSD2 forms active complexes with euchromatic histone methyltransferases G9a and NSD3 as well as cellular factors involved in transcription elongation. These data provide a possible molecular mechanism linking LSD2 to transcriptional regulation after initiation.


Journal of Clinical Oncology | 1998

Mantle-cell lymphomas have more widespread disease and a slower response to chemotherapy compared with follicle-center lymphomas: results of a prospective comparative analysis of the German Low-Grade Lymphoma Study Group.

Wolfgang Hiddemann; M Unterhalt; R Herrmann; H H Wöltjen; E D Kreuser; L Trümper; M Reuss-Borst; E Terhardt-Kasten; M Busch; A Neubauer; Ursula B. Kaiser; R D Hanrath; H Middeke; G Helm; M Freund; H Stein; M Tiemann; Reza Parwaresch

PURPOSE To compare mantle-cell lymphomas (MCLs) and follicle-center lymphomas (FCLs) for their features of clinical presentation, response to chemotherapy, and prognosis on the basis of a prospective randomized clinical trial. PATIENTS AND METHODS Patients with MCL and FCL who entered onto the prospective randomized comparison of cyclophosphamide, vincristine, and prednisone (COP) versus prednimustine and mitoxantrone (PmM) followed by a second randomization for interferon (IFN) maintenance versus observation only. RESULTS One hundred sixty-five of 234 patients had FCL and 45 of 234 patients had MCL. With FCL, both sexes were equally affected (men, 47%); patients with MCL were predominantly men (78%; P < .0004) and had a higher median age (64 v 53 years; P < .0001). Patients with MCL also had more widespread disease, reflected by the proportion of patients with two or greater extranodal manifestations (43% v 21%; P < .005) and nine or greater involved nodal areas (64% v 45%; nonsignificant [NS]). Response to chemotherapy was significantly lower in patients with MCL (complete remission [CR] + partial remission [PR], 69% v 88%; P < .05) and occurred at a slower pace. Patients with MCL also had a shorter event-free interval (median, 8 v 24 months; P < .0001) and overall survival (median, 28 v 77 months; P < .0001). In both subtypes, however, patients with less than two residual lymphoma manifestations in remission experienced a relatively good prognosis with an estimated 5-year survival of greater than 60% for MCL and greater than 75% for FCL. CONCLUSION MCL and FCL differ substantially in their features of presentation, response to chemotherapy, and long-term prognosis. The extent of residual disease after completion of chemotherapy discriminates patients with different prognosis and may be used for the stratification of postremission strategies.

Collaboration


Dive into the Ursula B. Kaiser's collaboration.

Top Co-Authors

Avatar

Rona S. Carroll

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

William W. Chin

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuyun Xu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Le Min

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sekoni D. Noel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyeong-Hoon Jeong

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge