Ursula Eichenlaub-Ritter
Bielefeld University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ursula Eichenlaub-Ritter.
Reproductive Biomedicine Online | 2004
Ursula Eichenlaub-Ritter; E. Vogt; H Yin; Roger G. Gosden
Studies of human oocytes obtained from women of advanced reproductive age revealed that spindles are frequently aberrant, with chromosomes sometimes failing to align properly at the equator during meiosis I and II. Chromosomal analyses of donated and spare human oocytes and cytogenetic and molecular studies on the origin of trisomies collectively suggest that errors in chromosome segregation during oogenesis increase with advancing maternal age and as the menopause approaches. Disturbances in the fidelity of chromosome segregation, especially at anaphase I, leading to aneuploidy are prime causes of reduced developmental competence of embryos in assisted reproduction, as well as being responsible for the genesis of genetic disease. This review provides an overview of spindle formation and chromosome behaviour in mammalian oocytes. Evidence of a link between abnormal mitochondrial function in oocytes and somatic follicular cells, and finally disturbances in chromosome cohesion and segregation, and cell cycle control in aged mammalian oocytes, are also discussed.
Reproductive Biomedicine Online | 2002
Ursula Eichenlaub-Ritter; Ying Shen; Hans-Rudolf Tinneberg
Oocytes are structured, polarized cells. For high developmental potential, it is essential that the distribution of organelles and molecules, and the function of meiotic spindles remain intact during handling of oocytes in assisted reproduction. Spindles are dynamic cell organelles. Spindle formation depends on activity of motor proteins, energy supply and temperature. Disturbances in spindle function may predispose oocytes to aneuploidy or maturation arrest. Thus, perturbation of the cytoskeletal integrity of oocytes may critically influence the fate of the embryo. Recently, enhanced polarizing microscopy has been developed for non-invasive analysis of spindle morphology in living mammalian oocytes. Chemically induced dynamic alterations have been characterized in the spindle in individual mouse oocytes and it has been shown that spindle aberrations are predictive of risks for non-disjunction. Spindle imaging identified adverse, irreversible effects of handling in living human oocytes (for instance, the extreme susceptibility of human oocytes to cooling). Also, oocyte immaturity may be detected. Selection of metaphase II oocytes and an injection site for intracytoplasmic sperm injection (ICSI) that avoids spindle damage may increase the yield of euploid embryos. The detection of genetic, environmentally induced, or treatment-related defects in oocyte maturation by non-invasive spindle imaging can improve quality control and assist in the selection of morphologically normal oocytes for assisted reproduction.
Maturitas | 1998
Ursula Eichenlaub-Ritter
OBJECTIVES Correlations between parental age, aneuploidy in germ cells and recent findings on aetiological factors in mammalian trisomy formation are reviewed. METHODS Data from observations in human oocytes, molecular studies on the origin of extra chromosomes in trisomies, experiments in a mouse model system, and transgenic approaches are shown. RESULTS Errors in chromosome segregation are most frequent in meiosis I of oogenesis in mammals and predominantly predispose specific chromosomes and susceptible chiasmate configurations to maternal age-related nondisjunction. Studies on spindle structure, cell cycle and chromosome behaviour in oocytes of the CBA/Ca mouse used as a model for the maternal age-effect suggest that hormonal homeostasis and size of the follicle pool influence the quality, maturation competence and spindle size of the mammalian oocyte. Predisposition to errors in chromosome segregation are critically dependent on altered cell cycles. Compromised protein synthesis and mitochondrial function affect maturation kinetics and spindle formation, and cause untimely segregation of chromosomes (predivision), mimicking an aged phenotype. CONCLUSIONS Altered cell cycles and untimely resolution of chiasmata but also nondisjunction of late segregating homologues caused by asynchrony in cytoplasmic and nuclear maturation appear to be causal to errors in chromosome segregation with advanced maternal age. Oocytes appear to lack checkpoints guarding against untimely chromosome segregation. Genes and exposures affecting pool size, hormonal homeostasis and interactions between oocytes and their somatic compartment and thus quality of follicles and oocytes have the potential to critically influence chromosome distribution in female meiosis and affect fertility in humans and other mammals.
Cytogenetic and Genome Research | 1989
Ursula Eichenlaub-Ritter; I. Boll
To detect age-related alterations in the formation and function of the spindle apparatus, we examined in vitro maturing oocytes obtained from young (2-4 mo) and aged (greater than 9 mo) diestrous CBA/Ca mice. Observation of cells processed for antitubulin immunofluorescence revealed that oocytes from aged females progress faster through first maturation division than those from young animals. They are also more prone to nondisjunction, as shown by a significantly higher level of aneuploidy in C-banded cells arrested at metaphase II. The ability of oocytes to recover from treatment with a microtubule inhibitor, nocodazole, and the effect of the drug on spindle integrity and chromosome segregation were also studied. In both age groups, treatment of metaphase I oocytes with 10 microM nocodazole caused rapid and complete microtubule depolymerization and chromosome scattering. Upon recovery, oocytes from both age groups were able to reestablish a spindle apparatus, proceed through anaphase, and extrude a first polar body. However, nocodazole treatment led to a dramatic increase of aneuploidy. Unexpectedly, the relative rise in hyperploids was greater in oocytes from young mice than in those from aged mice, so that the absolute percentage of hyperploid metaphase II cells was similar in both age groups after drug treatment. Concomitantly, nocodazole exposure abolished or, at least, diminished intrinsic differences in the cell cycle and anaphase trigger present in the controls (e.g., the earlier onset of chromosome separation in oocytes from aged females). It shortened the period available for spindle formation before chromosome segregation in all oocytes. Therefore, our study implies that temporal differences in the progression of oocytes through maturation, in particular, the shortening of the time available for alignment of bivalents before chromosome separation occurs in oocytes of old females, are mainly responsible for age-related rises in aneuploidy. There is no indication that (1) the spindle apparatus of oocytes from aged mammals is more labile or susceptible to disturbances than the spindle apparatus of oocytes from young individuals or that (2) an increase in the number of univalents makes oocytes from aged mammals particularly prone to nondisjunction.
Mitochondrion | 2011
Ursula Eichenlaub-Ritter; Marek Wieczorek; S. Lüke; Thorsten Seidel
Mammalian oocytes are long-lived cells in the human body. They initiate meiosis already in the embryonic ovary, arrest meiotically for long periods in dictyate stage, and resume meiosis only after extensive growth and a surge of luteinizing hormone which mediates signaling events that overcome meiotic arrest. Few mitochondria are initially present in the primordial germ cells while there are mitogenesis and structural and functional differentiation and stage-specific formation of functionally diverse domains of mitochondria during oogenesis. Mitochondria are most prominent cell organelles in oocytes and their activities appear essential for normal spindle formation and chromosome segregation, and they are one of the most important maternal contributions to early embryogenesis. Dysfunctional mitochondria are discussed as major factor in predisposition to chromosomal nondisjunction during first and second meiotic division and mitotic errors in embryos, and in reduced quality and developmental potential of aged oocytes and embryos. Several lines of evidence suggest that damage by oxidative stress/reactive oxygen species in dependence of age, altered antioxidative defence and/or altered environment and bi-directional signaling between oocyte and the somatic cells in the follicle contribute to reduced quality of oocytes and blocked or aberrant development of embryos after fertilization. The review provides an overview of mitogenesis during oogenesis and some recent data on oxidative defence systems in mammalian oocytes, and on age-related changes as well as novel approaches to study redox regulation in mitochondria and ooplasm. The latter may provide new insights into age-, environment- and cryopreservation-induced stress and mitochondrial dysfunction in oocytes and embryos.
Toxicology Letters | 2003
Micheline Kirsch-Volders; Annelies Vanhauwaert; Ursula Eichenlaub-Ritter; Ilse Decordier
Indirect mechanisms of genotoxicity correspond to interactions of mutagens with non-DNA targets, and are expected to show threshold concentration-effect response curves. If these thresholds can be proven experimentally they may provide a third alternative for risk assessment, besides the No Effect Level/Safety Factor approach and the low dose linear extrapolation method. We contributed significantly to the in vitro assessment of thresholds in human lymphocytes exposed to the spindle inhibitors nocodazole and carbendazim showing dose dependency and existence of lower thresholds for induction of non-disjunction as compared to chromosome loss. Micronuclei correlated with p53-independent or p53-dependent apoptosis and elimination of aneuploid cells. Extrapolation from in vitro threshold values to the in vivo situation remains unsolved. Comparing the in vitro threshold values for griseofulvin in human and rat lymphocytes with in vivo NOAEL/LOAEL in bone marrow/gut/erythrocytes suggests that the in vitro human system is the most sensitive. The threshold for induction of non-disjunction in in vitro maturing, nocodazole-exposed mouse oocytes was in the same low range. Regulators (UK Committee on Mutagenicity, http://www.doh.gov.uk/com/com.htm) considered the importance of thresholds for indirect mechanisms of genotoxicity. Acceptance of a non-linear extrapolation for mutagens requires mechanistic studies identifying the mutagen/target interactions. Moreover appropriate risk evaluation will require additional studies on individual susceptibility for indirect mutagenic effects and on interactions of aneugens in complex mixtures.
Chromosoma | 1988
Ursula Eichenlaub-Ritter; Ann C. Chandley; R. G. Gosden
To elucidate the possible mechanism of disturbances in chromosome segregation leading to the increase in aneuploidy in oocytes of aged females we examined the meiotic spindles of CBA/Ca mice. Employing immunofluorescence with an anti-tubulin antibody, and human scleroderma serum, as well as 4′-6-diamidino-2-phenylindole (DAPI) staining of chromosomes the microtubular cytoskeleton could be visualized, and the behaviour of chromosomes and centromeres of oocytes spontaneously maturing in vitro could be studied. The morphology of spindles during the first meiotic division was not conspiciously different in oocytes from young and aged mice as far as the cytoskeletal elements were concerned. Neither multipolar spindles nor pronounced cytoplasmic asters appeared in oocytes of mice approaching the end of their reproductive life (9 months and older). Oocytes of aged females also did not exhibit any sign of premature separation of parental chromosomes at prophase, obvious malorientations of bivalents, or significant lagging of chromosomes during ana and telophase. Metaphase I with all bivalents aligned at the spindle equator appeared to be a relatively brief stage in oocyte development compared with pro-and prometaphase. Therefore, already slight disturbances occuring in the timing of the developmental programme which leads to a premature anaphase transition may be responsible for the high incidence of chromosomally unbalanced gametes in aged females, rather than non-separation and lagging of chromosomes during late ana-and telophase. In a second set of experiments we compared the metaphase II spindles of spontaneously ovulated oocytes obtained from animals at different ages. Previous studies have shown that spindle length and chromosome alignment may be altered in cells predisposed to aneuploidy. To distinguish between the significance of the chronological age of the female and the physiological age of the ovaries (as indicated by the total number of oocytes remaining) we examined the spindle apparatus in young (3–4 months old) and aged (9 months and older) mice as well as CBA females which had been unilaterally ovariectomized (uni-ovx) early in adult life and were approaching the end of their reproductive life at 6–7 months of age. Measurements of the pole-to-pole distance implied that spindle length may be related to maternal age. In oocytes of aged (9 month), uni-ovx (6 month) as well as 6-month-old sham-operated controls the metaphase II spindle was significantly shorter than in oocytes of young mice. By contrast, chromosome disorder and displacement was most pronounced in the aged and uni-ovx mice whilst most oocytes from young mice and moderately aged shamtreated controls exhibited a more regular alignment of chromosomes. These results, which are consistent with recent findings in CBA mice of an increased rate of aneuploidy in females approaching the end of their reproductive life, are discussed with respect to the hypothesis that the aetiology of aneuploidy rests on the critical timing of different events in oocyte development.
Environmental and Molecular Mutagenesis | 1996
Ursula Eichenlaub-Ritter
Parental age is the most important aetiological factor in trisomy formation in humans. Cytogenetic studies on germ cells reviewed here imply that (i) 2–4% sperm are aneuploid, and 8.6% oocytes from IVF are hyperploid, (ii) a paternal age effect may exist, and (iii) oocytes of aged women contain precociously separated chromatids in metaphase II. Trisomy data suggest that most aneuploidy is generated during meiosis 1 of oogenesis and is maternal age‐dependent. Trisomy 18 is unique, originating mostly from maternal meiosis II errors. The extra gonosome in 47, XXY derives mostly from a paternal meiosis I error. Trisomy of individual chromosomes may remain low, linearly rise, or exponentially increase with advanced maternal age. Maternal age related trisomies involve achiasmatic and normochiasmate chromosomes, and chromosomes with disturbed recombination and distally located chiasmata. Hypotheses on the origin of the maternal age‐effect are critically reviewed. One model is presented that relates to altered cell cycle and protein phosphorylation in oocytes of aged mammals and accounts for most of the observed data in humans and in experimental studies. Aneuploidy may thus involve a predetermined component but is possibly also influenced by extrinsic factors reducing oocyte quality or depleting the oocyte pool precociously. Areas of future research are proposed to elucidate (i) the significance of early disturbances in the prenatal ovary, (ii) parameters diminishing the quality of oocytes in dictyate stage, and (iii) mechanisms enabling oocytes to process all chromosomal configurations successfully during later stages of oogenesis. Studies with newly developed and existing animal models appear indispensable to identify exposures affecting chromosome disjunction during meiosis, especially in the aging female.
Human Reproduction | 2015
Helen M. Picton; Christine Wyns; Richard A. Anderson; Ellen Goossens; Kirsi Jahnukainen; Sabine Kliesch; Rod T. Mitchell; Guido Pennings; Natalie Rives; Herman Tournaye; Ans M.M. van Pelt; Ursula Eichenlaub-Ritter; Stefan Schlatt
STUDY QUESTION What clinical practices, patient management strategies and experimental methods are currently being used to preserve and restore the fertility of prepubertal boys and adolescent males? SUMMARY ANSWER Based on a review of the clinical literature and research evidence for sperm freezing and testicular tissue cryopreservation, and after consideration of the relevant ethical and legal challenges, an algorithm for the cryopreservation of sperm and testicular tissue is proposed for prepubertal boys and adolescent males at high risk of fertility loss. WHAT IS KNOWN ALREADY A known late effect of the chemotherapy agents and radiation exposure regimes used to treat childhood cancers and other non-malignant conditions in males is the damage and/or loss of the proliferating spermatogonial stem cells in the testis. Cryopreservation of spermatozoa is the first line treatment for fertility preservation in adolescent males. Where sperm retrieval is impossible, such as in prepubertal boys, or it is unfeasible in adolescents prior to the onset of ablative therapies, alternative experimental treatments such as testicular tissue cryopreservation and the harvesting and banking of isolated spermatogonial stem cells can now be proposed as viable means of preserving fertility. STUDY DESIGN, SIZE, DURATION Advances in clinical treatments, patient management strategies and the research methods used to preserve sperm and testicular tissue for prepubertal boys and adolescents were reviewed. A snapshot of the up-take of testis cryopreservation as a means to preserve the fertility of young males prior to December 2012 was provided using a questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHODS A comprehensive literature review was conducted. In addition, survey results of testis freezing practices in young patients were collated from 24 European centres and Israeli University Hospitals. MAIN RESULTS AND THE ROLE OF CHANCE There is increasing evidence of the use of testicular tissue cryopreservation as a means to preserve the fertility of pre- and peri-pubertal boys of up to 16 year-old. The survey results indicate that of the 14 respondents, half of the centres were actively offering testis tissue cryobanking as a means of safeguarding the future fertility of boys and adolescents as more than 260 young patients (age range less than 1 year old to 16 years of age), had already undergone testicular tissue retrieval and storage for fertility preservation. The remaining centres were considering the implementation of a tissue-based fertility preservation programme for boys undergoing oncological treatments. LIMITATIONS, REASONS FOR CAUTION The data collected were limited by the scope of the questionnaire, the geographical range of the survey area, and the small number of respondents. WIDER IMPLICATIONS OF THE FINDINGS The clinical and research questions identified and the ethical and legal issues raised are highly relevant to the multi-disciplinary teams developing treatment strategies to preserve the fertility of prepubertal and adolescent boys who have a high risk of fertility loss due to ablative interventions, trauma or genetic pre-disposition.
Human Reproduction | 2010
Tom Trapphoff; Nady El Hajj; Ulrich Zechner; T. Haaf; Ursula Eichenlaub-Ritter
BACKGROUND Cryopreservation of follicles for culture and oocyte growth and maturation in vitro provides an option to increase the number of fertilizable oocytes and restore fertility in cases where transplantation of ovarian tissue poses a risk for malignant cell contamination. Vitrification for cryopreservation is fast and avoids ice crystal formation. However, the influences of exposure to high concentrations of cryoprotectants on follicle development, oocyte growth and maturation, and particularly, on the DNA integrity and methylation imprinting has not been studied systematically. METHODS Follicle survival and development, DNA damage, oocyte growth patterns, maturation, spindle formation and chromosomal constitution were studied after Cryo-Top vitrification of mouse pre-antral follicles cultured to the antral stage and induced to ovulate in vitro. Methylation of differentially methylated regions (DMRs) of two maternally (Snrpn and Igf2r) and one paternally (H19) imprinted genes was studied by bisulfite pyrosequencing. RESULTS Vitrification results in partial or total loss of oocyte-granulosa cell apposition and actin-rich transzonal projections, a transient increase in DNA breaks and a delay in follicle development. However, the oocyte growth pattern, maturation, spindle and chromosomal constitution are not significantly different between the vitrified and the control groups. Vitrification is not associated with elevated levels of imprinting mutations (aberrant methylation of the entire DMR), although the distribution of sporadic CpG methylation errors in the Snrpn DMR appears to differ slightly between control and vitrified oocytes. CONCLUSIONS DNA breaks appear to be rapidly repaired and vitrification of oocytes inside pre-antral follicles by the Cryo-Top method does not appear to increase risks of abnormal imprinting or disturbances in spindle formation and chromosome segregation.