Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ursula Hartmann is active.

Publication


Featured researches published by Ursula Hartmann.


Biochemical Journal | 2003

Characterization of SMOC-2, a modular extracellular calcium-binding protein

Christian Vannahme; Silke Gösling; Mats Paulsson; Patrik Maurer; Ursula Hartmann

We have isolated the novel gene SMOC-2, which encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain found only in the homologous SMOC-1. Phylogenetic analysis of the calcium-binding domain sequences showed that SMOC-1 and -2 form a separate group within the BM-40 family. The human and mouse SMOC-2 sequences are coded for by genes consisting of 13 exons located on chromosomes 6 and 17, respectively. Analysis of recombinantly expressed protein showed that SMOC-2 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots and reverse transcription PCR revealed a widespread expression in many tissues.


Journal of Biological Chemistry | 2003

SC1/Hevin AN EXTRACELLULAR CALCIUM-MODULATED PROTEIN THAT BINDS COLLAGEN I

Harald O. Hambrock; D. Patric Nitsche; Uwe Hansen; Peter Bruckner; Mats Paulsson; Patrik Maurer; Ursula Hartmann

SC1, a member of the BM-40 family of extracellular matrix proteins, was recombinantly expressed in a eukaryotic expression system. The full-length protein as well as truncated versions were purified to homogeneity under non-denaturing conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of full-length SC1 revealed a mass of 87.8 kDa of which 16.8 kDa is contributed by posttranslational modifications. In electron microscopy, after negative staining, SC1 was revealed as a globule attached to a thread-like structure. A calcium dependence of the SC1 conformation could be demonstrated by fluorescence spectroscopy. In the extracellular matrix of cultured osteosarcoma cells SC1 was found associated with collagen I-containing fibrils, and binding of SC1 to reconstituted collagen I fibrils could be demonstrated by immunogold labeling and electron microscopy. SC1 showed a broad expression in a variety of tissues.


Journal of Neurochemistry | 2002

Molecular cloning of testican-2: defining a novel calcium-binding proteoglycan family expressed in brain.

Christian Vannahme; Sabine Schübel; Marcus Herud; Silke Gösling; Hanni Hülsmann; Mats Paulsson; Ursula Hartmann; Patrik Maurer

Abstract: We have screened a human cDNA library using an expressed sequence tag related to the BM‐40/secreted protein, acidic and rich in cysteine (SPARC)/osteonectin family of proteins and isolated a novel cDNA. It encodes a protein precursor of 424 amino acids that consists of a signal peptide, a follistatin‐like domain, a Ca2+‐binding domain, a thyroglobulin‐like domain, and a C‐terminal region with two putative glycosaminoglycan attachment sites. The protein is homologous to testican‐1 and was termed testican‐2. Testican‐1 is a proteoglycan originally isolated from human seminal plasma that is also expressed in brain. Northern blot hybridization of testican‐2 showed a 6.1‐kb mRNA expressed mainly in CNS but also found in lung and testis. A widespread expression in multiple neuronal cell types in olfactory bulb, cerebral cortex, thalamus, hippocampus, cerebellum, and medulla was detected by in situ hybridization. A recombinant fragment consisting of the Ca2+‐binding EF‐hand domain and the thyroglobulin‐like domain of testican‐2 showed a reversible Ca2+‐dependent conformational change in circular dichroism studies. Testican‐1 and ‐2 form a novel Ca2+‐binding proteoglycan family built of modular domains with the potential to participate in diverse steps of neurogenesis.


Journal of Hepatology | 2014

Liver adapts mitochondrial function to insulin resistant and diabetic states in mice

Andras Franko; Jürgen-Christoph von Kleist-Retzow; Susanne Neschen; Moya Wu; Philipp Schommers; Marlen Böse; Alexander Kunze; Ursula Hartmann; Carmen Sánchez-Lasheras; Oliver Stoehr; Michael Huntgeburth; Susanne Brodesser; Martin Irmler; Johannes Beckers; Martin Hrabé de Angelis; Mats Paulsson; Markus Schubert; Rudolf J. Wiesner

BACKGROUND & AIMS To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.


Experimental Cell Research | 2008

The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration.

Silke Maier; Mats Paulsson; Ursula Hartmann

SMOC-2 is a recently discovered member of the BM-40/SPARC/osteonectin family of extracellular multidomain proteins of so far unknown function. While we have shown earlier that the homologous protein SMOC-1 is associated with basement membranes, in this study we demonstrate that, in the mouse, SMOC-2 could be detected in a large number of non-basement membrane localizations, often showing a diffuse tissue distribution. A more distinct expression pattern was seen in skin where SMOC-2 is mainly present in the basal layers of the epidermis. Functionally, recombinant SMOC-2 stimulated attachment of primary epidermal cells as well as several epidermal-derived cell lines but had no effect on the attachment of non-epidermal cells. Inhibition experiments using blocking antibodies against individual integrin subunits allowed the identification of alphavbeta6 and alphavbeta1 integrins as important cellular receptors for SMOC-2. Cell attachment as well as the formation of focal adhesions could be attributed to the extracellular calcium-binding domain. The calcium-binding domain also stimulated migration, but not proliferation of keratinocyte-like HaCaT cells. We conclude that SMOC-2, like other members of the BM40/SPARC family, acts as a regulator of cell-matrix interactions.


Matrix Biology | 2011

SMOC1 is a tenascin-C interacting protein over-expressed in brain tumors.

Florence Brellier; Sabrina Ruggiero; Daniela Zwolanek; Enrico Martina; Daniel Hess; Marianne Brown-Luedi; Ursula Hartmann; Manuel Koch; Adrian Merlo; Maddalena M. Lino; Ruth Chiquet-Ehrismann

Tenascin-C is an extracellular matrix protein over-expressed in a large variety of cancers. In the present study, we aimed at identifying new interactors of tenascin-C by purifying secreted proteins on a tenascin-C affinity column. Analysis of eluates by mass spectrometry revealed phosphoglycerate kinase 1, clusterin, fibronectin, SPARC-related modular calcium-binding protein 1 (SMOC1) and nidogen-2 as potential interactors of tenascin-C. The interaction between tenascin-C and SMOC1 was confirmed by co-immunoprecipitation and further analyzed by Surface Plasmon Resonance Spectroscopy, which revealed an apparent dissociation constant (K(D)) value of 2.59∗10(-9)M. Further analyses showed that this binding is reduced in the presence of EDTA. To investigate whether SMOC1 itself could be over-expressed in the context of tumorigenesis, we analyzed data of two independent RNA profiling studies and found that mRNA levels of SMOC1 are significantly increased in oligodendrogliomas compared to control brain samples. In support of these data, western blot analysis of protein extracts from 12 oligodendrogliomas, 4 astrocytomas and 13 glioblastomas revealed elevated levels compared to healthy brain extract. Interestingly, cell migration experiments revealed that SMOC1 can counteract the chemo-attractive effect of tenascin-C on U87 glioma cells. The present study thus identified SMOC1 as a new cancer-associated protein capable of interacting with tenascin-C in vitro.


Journal of Neurochemistry | 2013

Testican‐3: a brain‐specific proteoglycan member of the BM‐40/SPARC/osteonectin family

Ursula Hartmann; Hanni Hülsmann; Judith Seul; Sandra Röll; Heven Midani; Isabelle Breloy; Daniel Hechler; Regina Müller; Mats Paulsson

The testicans are a three‐member family of secreted proteoglycans structurally related to the BM‐40/secreted protein acidic and rich in cystein (SPARC) osteonectin family of extracellular calcium‐binding proteins. In vitro studies have indicated that testicans are involved in the regulation of extracellular protease cascades and in neuronal function. Here, we describe the biochemical characterization and tissue distribution of mouse testican‐3 as well as the inactivation of the corresponding gene. The expression of testican‐3 in adult mice is restricted to the brain, where it is located diffusely within the extracellular matrix, as well as associated with cells. Brain‐derived testican‐3 is a heparan sulphate proteoglycan. In cell culture, the core protein is detected in the supernatant and the extracellular matrix, whereas the proteoglycan form is restricted to the supernatant. This indicates possible interactions of the testican‐3 core protein with components of the extracellular matrix which are blocked by addition of the glycosaminoglycan chains. Mice deficient in testican‐3 are viable and fertile and do not show an obvious phenotype. This points to a functional redundancy among the different members of the testican family or between testican‐3 and other brain heparan sulphate proteoglycans.


Developmental Dynamics | 2014

Smoc2 modulates embryonic myelopoiesis during zebrafish development

Hendrik Mommaerts; Camila V. Esguerra; Ursula Hartmann; Frank P. Luyten; Przemko Tylzanowski

Background: SMOC2 is a member of the BM‐40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. Results: In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down‐regulated in smoc2 morphants. Conclusions: Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development. Developmental Dynamics 243:1375–1390, 2014.


PLOS ONE | 2013

The heparin-binding activity of secreted modular calcium-binding protein 1 (SMOC-1) modulates its cell adhesion properties.

Marina Klemenčič; Marko Novinec; Silke Maier; Ursula Hartmann; Brigita Lenarčič

Secreted modular calcium-binding proteins 1 and 2 (SMOC-1 and SMOC-1) are extracellular calcium- binding proteins belonging to the BM-40 family of proteins. In this work we have identified a highly basic region in the extracellular calcium-binding (EC) domain of the SMOC-1 similar to other known glycosaminoglycan-binding motifs. Size-exclusion chromatography shows that full length SMOC-1 as well as its C-terminal EC domain alone bind heparin and heparan sulfate, but not the related chondroitin sulfate or dermatan sulfate glycosaminoglycans. Intrinsic tryptophan fluorescence measurements were used to quantify the binding of heparin to full length SMOC-1 and the EC domain alone. The calculated equilibrium dissociation constants were in the lower micromolar range. The binding site consists of two antiparallel alpha helices and mutagenesis experiments have shown that heparin-binding residues in both helices must be replaced in order to abolish heparin binding. Furthermore, we show that the SMOC-1 EC domain, like the SMOC-2 EC domain, supports the adhesion of epithelial HaCaT cells. Heparin-binding impaired mutants failed to support S1EC-mediated cell adhesion and together with the observation that S1EC in complex with soluble heparin attenuated cell adhesion we conclude that a functional and accessible S1EC heparin-binding site mediates adhesion of epithelial cells to SMOC-1.


Journal of Biological Chemistry | 2018

The cartilage-specific lectin C-type lectin domain family 3 member A (CLEC3A) enhances tissue plasminogen activator–mediated plasminogen activation

Daniela Lau; Dzemal Elezagic; Gabriele Hermes; Matthias Mörgelin; Alexander P. Wohl; Manuel Koch; Ursula Hartmann; Stefan Höllriegl; Raimund Wagener; Mats Paulsson; Thomas Streichert; Andreas R. Klatt

C-type lectin domain family 3 member A (CLEC3A) is a poorly characterized protein belonging to the superfamily of C-type lectins. Its closest homologue tetranectin binds to the kringle 4 domain of plasminogen and enhances its association with tissue plasminogen activator (tPA) thereby enhancing plasmin production, but whether CLEC3A contributes to plasminogen activation is unknown. Here, we recombinantly expressed murine and human full-length CLEC3As as well as truncated forms of CLEC3A in HEK-293 Epstein-Barr nuclear antigen (EBNA) cells. We analyzed the structure of recombinant CLEC3A by SDS-PAGE and immunoblot, glycan analysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy; compared the properties of the recombinant protein with those of CLEC3A extracted from cartilage; and investigated its tissue distribution and extracellular assembly by immunohistochemistry and immunofluorescence microscopy. We found that CLEC3A mainly occurs as a monomer, but also forms dimers and trimers, potentially via a coiled-coil α-helix. We also noted that CLEC3A can be modified with chondroitin/dermatan sulfate side chains and tends to oligomerize to form higher aggregates. We show that CLEC3A is present in resting, proliferating, and hypertrophic growth-plate cartilage and assembles into an extended extracellular network in cultures of rat chondrosarcoma cells. Further, we found that CLEC3A specifically binds to plasminogen and enhances tPA-mediated plasminogen activation. In summary, we have determined the structure, tissue distribution, and molecular function of the cartilage-specific lectin CLEC3A and show that CLEC3A binds to plasminogen and participates in tPA-mediated plasminogen activation.

Collaboration


Dive into the Ursula Hartmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge