Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ursula J. Buchholz is active.

Publication


Featured researches published by Ursula J. Buchholz.


Journal of Virology | 2000

Bovine Respiratory Syncytial Virus Nonstructural Proteins NS1 and NS2 Cooperatively Antagonize Alpha/Beta Interferon-Induced Antiviral Response

Jörg Schlender; Birgit Bossert; Ursula J. Buchholz; Karl-Klaus Conzelmann

ABSTRACT The functions of bovine respiratory syncytial virus (BRSV) nonstructural proteins NS1 and NS2 were studied by generation and analysis of recombinant BRSV carrying single and double gene deletions. Whereas in MDBK cells the lack of either or both NS genes resulted in a 5,000- to 10,000-fold reduction of virus titers, in Vero cells a moderate (10-fold) reduction was observed. Interestingly, cell culture supernatants from infected MDBK cells were able to restrain the growth of NS deletion mutants in Vero cells, suggesting the involvement of NS proteins in escape from cytokine-mediated host cell responses. The responsible factors in MDBK supernatants were identified as type I interferons by neutralization of the inhibitory effect with antibodies blocking the alpha interferon (IFN-α) receptor. Treatment of cells with recombinant universal IFN-α A/D or IFN-β revealed severe inhibition of single and double deletion mutants, whereas growth of full-length BRSV was not greatly affected. Surprisingly, all NS deletion mutants were equally repressed, indicating an obligatory cooperation of NS1 and NS2 in antagonizing IFN-mediated antiviral mechanisms. To verify this finding, we generated recombinant rabies virus (rRV) expressing either NS1 or NS2 and determined their IFN sensitivity. In cells coinfected with NS1- and NS2-expressing rRVs, virus replication was resistant to doses of IFN which caused a 1,000-fold reduction of replication in cells infected with wild-type RV or with each of the NS-expressing rRVs alone. Thus, BRSV NS proteins have the potential to cooperatively protect an unrelated virus from IFN-α/β mediated antiviral responses. Interestingly, BRSV NS proteins provided a more pronounced resistance to IFN in the bovine cell line MDBK than in cell lines of other origins, suggesting adaptation to host-specific antiviral responses. The findings described have a major impact on the design of live recombinant BRSV and HRSV vaccines.


Virology | 2003

Genetic diversity between human metapneumovirus subgroups.

Stéphane Biacchesi; Mario H. Skiadopoulos; Guy Boivin; Christopher T. Hanson; Brian R. Murphy; Peter L. Collins; Ursula J. Buchholz

Complete consensus nucleotide sequences were determined for human metapneumovirus (HMPV) isolates CAN97-83 and CAN98-75, representing the two proposed genotypes or genetic subgroups of HMPV. The overall level of genome nucleotide sequence identity and aggregate proteome amino acid sequence identity between the two HMPV subgroups were 80 and 90%, respectively, similar to the respective values of 81 and 88% between the two antigenic subgroups of human respiratory syncytial virus (HRSV). The diversity between HMPV subgroups was greatest for the SH and G proteins (59 and 37% identity, respectively), which were even more divergent than their HRSV counterparts (72 and 55% cross-subgroup identity, respectively). It is reasonable to anticipate that the two genetic subgroups of HMPV represent antigenic subgroups approximately comparable to those of HRSV.


The Lancet | 2004

Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS.

Alexander Bukreyev; Elaine W. Lamirande; Ursula J. Buchholz; Leatrice Vogel; William R. Elkins; Marisa St. Claire; Brian R. Murphy; Kanta Subbarao; Peter L. Collins

Summary Background The outbreak of severe acute respiratory syndrome (SARS) in 2002 was caused by a previously unknown coronavirus—SARS coronavirus (SARS-CoV). We have developed an experimental SARS vaccine for direct immunisation of the respiratory tract, the major site of SARS-coronavirus transmission and disease. Methods We expressed the complete SARS coronavirus envelope spike (S) protein from a recombinant attenuated parainfluenza virus (BHPIV3) that is being developed as a live attenuated, intranasal paediatric vaccine against human parainfluenza virus type 3 (HPIV3). We immunised eight African green monkeys, four with a single dose of BHPIV3/SARS-S and four with a control, BHPIV3/Ctrl, administered via the respiratory tract. A SARS-coronavirus challenge was given to all monkeys 28 days after immunisation. Findings Immunisation of animals with BHPIV3/SARS-S induced the production of SARS-coronavirus-neutralising serum antibodies, indicating that a systemic immune response resulted from mucosal immunisation. After challenge with SARS coronavirus, all monkeys in the control group shed SARS coronavirus, with shedding lasting 5–8 days. No viral shedding occurred in the group immunised with BHPIV3/SARS-S. Interpretation A vectored mucosal vaccine expressing the SARS-coronavirus S protein alone may be highly effective in a single-dose format for the prevention of SARS.


Journal of Virology | 2004

The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness.

Mario H. Skiadopoulos; Stéphane Biacchesi; Ursula J. Buchholz; Jeffrey M. Riggs; Sonja R. Surman; Emerito Amaro-Carambot; Josephine M. McAuliffe; William R. Elkins; Marisa St. Claire; Peter L. Collins; Brian R. Murphy

ABSTRACT The growth properties and antigenic relatedness of the CAN98-75 (CAN75) and the CAN97-83 (CAN83) human metapneumovirus (HMPV) strains, which represent the two distinct HMPV genetic lineages and exhibit 5 and 63% amino acid divergence in the fusion (F) and attachment (G) proteins, respectively, were investigated in vitro and in rodents and nonhuman primates. Both strains replicated to high titers (≥6.0 log10) in the upper respiratory tract of hamsters and to moderate titers (≥3.6 log10) in the lower respiratory tract. The two lineages exhibited 48% antigenic relatedness based on reciprocal cross-neutralization assay with postinfection hamster sera, and infection with each strain provided a high level of resistance to reinfection with the homologous or heterologous strain. Hamsters immunized with a recombinant human parainfluenza virus type 1 expressing the fusion F protein of the CAN83 strain developed a serum antibody response that efficiently neutralized virus from both lineages and were protected from challenge with either HMPV strain. This result indicates that the HMPV F protein is a major antigenic determinant that mediates extensive cross-lineage neutralization and protection. Both HMPV strains replicated to low titers in the upper and lower respiratory tracts of rhesus macaques but induced high levels of HMPV-neutralizing antibodies in serum effective against both lineages. The level of HMPV replication in chimpanzees was moderately higher, and infected animals developed mild colds. HMPV replicated the most efficiently in the respiratory tracts of African green monkeys, and the infected animals developed a high level of HMPV serum-neutralizing antibodies (1:500 to 1:1,000) effective against both lineages. Reciprocal cross-neutralization assays in which postinfection sera from all three primate species were used indicated that CAN75 and CAN83 are 64 to 99% related antigenically. HMPV-infected chimpanzees and African green monkeys were highly protected from challenge with the heterologous HMPV strain. Taken together, the results from hamsters and nonhuman primates support the conclusion that the two HMPV genetic lineages are highly related antigenically and are not distinct antigenic subtypes or subgroups as defined by reciprocal cross-neutralization in vitro.


Journal of Virology | 2004

Recombinant Human Metapneumovirus Lacking the Small Hydrophobic SH and/or Attachment G Glycoprotein: Deletion of G Yields a Promising Vaccine Candidate

Stéphane Biacchesi; Mario H. Skiadopoulos; Lijuan Yang; Elaine W. Lamirande; Kim C. Tran; Brian R. Murphy; Peter L. Collins; Ursula J. Buchholz

ABSTRACT Human metapneumovirus (HMPV) has recently been identified as a significant cause of serious respiratory tract disease in humans. In particular, the emerging information on the contribution of HMPV to pediatric respiratory tract disease suggests that it will be important to develop a vaccine against this virus for use in conjunction with those being developed for human respiratory syncytial virus and the human parainfluenza viruses. A recently described reverse genetic system (S. Biacchesi, M. H. Skiadopoulos, K. C. Tran, B. R. Murphy, P. L. Collins, and U. J. Buchholz, Virology 321:247-259, 2004) was used to generate recombinant HMPVs (rHMPVs) that lack the G gene, the SH gene, or both. The ΔSH, ΔG, and ΔSH/G deletion mutants were readily recovered and were found to replicate efficiently during multicycle growth in cell culture. Thus, the SH and G proteins are not essential for growth in cell culture. Apart from the absence of the deleted protein(s), the virions produced by the gene deletion mutants were similar by protein yield and gel electrophoresis protein profile to wild-type HMPV. When administered intranasally to hamsters, the ΔG and ΔSH/G mutants replicated in both the upper and lower respiratory tracts, showing that HMPV containing F as the sole viral surface protein is competent for replication in vivo. However, both viruses were at least 40-fold and 600-fold restricted in replication in the lower and upper respiratory tract, respectively, compared to wild-type rHMPV. They also induced high titers of HMPV-neutralizing serum antibodies and conferred complete protection against replication of wild-type HMPV challenge virus in the lungs. Surprisingly, G is dispensable for protection, and the ΔG and ΔSH/G viruses represent promising vaccine candidates. In contrast, ΔSH replicated somewhat more efficiently in hamster lungs compared to wild-type rHMPV (20-fold increase on day 5 postinfection). This indicates that SH is completely dispensable in vivo and that its deletion does not confer an attenuating effect, at least in this rodent model.


Journal of Virology | 2005

Infection of Nonhuman Primates with Recombinant Human Metapneumovirus Lacking the SH, G, or M2-2 Protein Categorizes Each as a Nonessential Accessory Protein and Identifies Vaccine Candidates

Stéphane Biacchesi; Quynh N. Pham; Mario H. Skiadopoulos; Brian R. Murphy; Peter L. Collins; Ursula J. Buchholz

ABSTRACT Recombinant human metapneumovirus (HMPV) in which the SH, G, or M2 gene or open reading frame was deleted by reverse genetics was evaluated for replication and vaccine efficacy following topical administration to the respiratory tract of African green monkeys, a permissive primate host. Replication of the ΔSH virus was only marginally less efficient than that of wild-type HMPV, whereas the ΔG and ΔM2-2 viruses were reduced sixfold and 160-fold in the upper respiratory tract and 3,200-fold and 4,000-fold in the lower respiratory tract, respectively. Even with the highly attenuated mutants, there was unequivocal HMPV replication at each anatomical site in each animal. Thus, none of these three proteins is essential for HMPV replication in a primate host, although G and M2-2 increased the efficiency of replication. Each gene-deletion virus was highly immunogenic and protective against wild-type HMPV challenge. The ΔG and ΔM2-2 viruses are promising vaccine candidates that are based on independent mechanisms of attenuation and are appropriate for clinical evaluation.


Journal of Virology | 2009

A Chimeric A2 Strain of Respiratory Syncytial Virus (RSV) with the Fusion Protein of RSV Strain Line 19 Exhibits Enhanced Viral Load, Mucus, and Airway Dysfunction

Martin L. Moore; Michael H. Chi; Cindy Luongo; Nicholas W. Lukacs; Vasiliy V. Polosukhin; M.M. Huckabee; Dawn C. Newcomb; Ursula J. Buchholz; James E. Crowe; Kasia Goleniewska; John V. Williams; Peter L. Collins; R. Stokes Peebles

ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of respiratory failure and viral death in infants. Abundant airway mucus contributes to airway obstruction in RSV disease. Interleukin-13 (IL-13) is a mediator of pulmonary mucus secretion. It has been shown that infection of BALB/c mice with the RSV line 19 strain but not with the RSV A2 laboratory strain results in lung IL-13 and mucus expression. Here, we sequenced the RSV line 19 genome and compared it to the commonly used A2 and Long strains. There were six amino acid differences between the line 19 strain and both the A2 and Long RSV strains, five of which are in the fusion (F) protein. The Long strain, like the A2 strain, did not induce lung IL-13 and mucus expression in BALB/c mice. We hypothesized that the F protein of RSV line 19 is more mucogenic than the F proteins of A2 and Long. We generated recombinant, F-chimeric RSVs by replacing the F gene of A2 with the F gene of either line 19 or Long. Infection of BALB/c mice with RSV rA2 line 19F resulted in lower alpha interferon lung levels 24 h postinfection, higher lung viral load, higher lung IL-13 levels, greater airway mucin expression levels, and greater airway hyperresponsiveness than infection with rA2-A2F or rA2-LongF. We identified the F protein of RSV line 19 as a factor that plays a role in pulmonary mucin expression in the setting of RSV infection.


Journal of Virology | 2000

Chimeric Bovine Respiratory Syncytial Virus with Glycoprotein Gene Substitutions from Human Respiratory Syncytial Virus (HRSV): Effects on Host Range and Evaluation as a Live-Attenuated HRSV Vaccine

Ursula J. Buchholz; Harald Granzow; Kathrin Schuldt; Stephen S. Whitehead; Brian R. Murphy; Peter L. Collins

ABSTRACT We recently developed a system for the generation of infectious bovine respiratory syncytial virus (BRSV) from cDNA. Here, we report the recovery of fully viable chimeric recombinant BRSVs (rBRSVs) that carry human respiratory syncytial virus (HRSV) glycoproteins in place of their BRSV counterparts, thus combining the replication machinery of BRSV with the major antigenic determinants of HRSV. A cDNA encoding the BRSV antigenome was modified so that the complete G and F genes, including the gene start and gene end signals, were replaced by their HRSV A2 counterparts. Alternatively, the BRSV F gene alone was replaced by that of HRSV Long. Each antigenomic cDNA directed the successful recovery of recombinant virus, yielding rBRSV/A2 and rBRSV/LongF, respectively. The HRSV G and F proteins or the HRSV F in combination with BRSV G were expressed efficiently in cells infected with the appropriate chimeric virus and were efficiently incorporated into recombinant virions. Whereas BRSV and HRSV grew more efficiently in bovine and human cells, respectively, the chimeric rBRSV/A2 exhibited intermediate growth characteristics in a human cell line and grew better than either parent in a bovine line. The cytopathology induced by the chimera more closely resembled that of BRSV. BRSV was confirmed to be highly restricted for replication in the respiratory tract of chimpanzees, a host that is highly permissive for HRSV. Interestingly, the rBRSV/A2 chimeric virus was somewhat more competent than BRSV for replication in chimpanzees but remained highly restricted compared to HRSV. This showed that the substitution of the G and F glycoproteins alone was not sufficient to induce efficient replication in chimpanzees. Thus, the F and G proteins contribute to the host range restriction of BRSV but are not the major determinants of this phenotype. Although rBRSV/A2 expresses the major neutralization and protective antigens of HRSV, chimpanzees infected with this chimeric virus were not significantly protected against subsequent challenge with wild-type HRSV. This suggests that the growth restriction of rBRSV/A2 was too great to provide adequate antigen expression and that the capacity of this chimeric vaccine candidate for replication in primates will need to be increased by the importation of additional HRSV genes.


Journal of Virology | 2008

Nonstructural Proteins 1 and 2 of Respiratory Syncytial Virus Suppress Maturation of Human Dendritic Cells

Shirin Munir; Cyril Le Nouën; Cindy Luongo; Ursula J. Buchholz; Peter L. Collins; Alexander Bukreyev

ABSTRACT Human respiratory syncytial virus (RSV) is the most important agent of serious pediatric respiratory tract disease worldwide. One of the main characteristics of RSV is that it readily reinfects and causes disease throughout life without the need for significant antigenic change. The virus encodes nonstructural protein 1 (NS1) and NS2, which are known to suppress type I interferon (IFN) production and signaling. In the present study, we monitored the maturation of human monocyte-derived myeloid dendritic cells (DC) following inoculation with recombinant RSVs bearing deletions of the NS1 and/or NS2 proteins and expressing enhanced green fluorescent protein. Deletion of the NS1 protein resulted in increased expression of cell surface markers of DC maturation and an increase in the expression of multiple cytokines and chemokines. This effect was enhanced somewhat by further deletion of the NS2 protein, although deletion of NS2 alone did not have a significant effect. The upregulation was largely inhibited by pretreatment with a blocking antibody against the type I IFN receptor, suggesting that suppression of DC maturation by NS1/2 is, at least in part, a result of IFN antagonism mediated by these proteins. Therefore, this study identified another effect of the NS1 and NS2 proteins. The observed suppression of DC maturation may result in decreased antigen presentation and T-lymphocyte activation, leading to incomplete and/or weak immune responses that might contribute to RSV reinfection.


PLOS Pathogens | 2011

Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response

Shirin Munir; Philippa Hillyer; Cyril Le Nouën; Ursula J. Buchholz; Ronald L. Rabin; Peter L. Collins; Alexander Bukreyev

We recently demonstrated that the respiratory syncytial virus (RSV) NS1 protein, an antagonist of host type I interferon (IFN-I) production and signaling, has a suppressive effect on the maturation of human dendritic cells (DC) that was only partly dependent on released IFN-I. Here we investigated whether NS1 affects the ability of DC to activate CD8+ and CD4+ T cells. Human DC were infected with RSV deletion mutants lacking the NS1 and/or NS2 genes and assayed for the ability to activate autologous T cells in vitro, which were analyzed by multi-color flow cytometry. Deletion of the NS1, but not NS2, protein resulted in three major effects: (i) an increased activation and proliferation of CD8+ T cells that express CD103, a tissue homing integrin that directs CD8+ T cells to mucosal epithelial cells of the respiratory tract and triggers cytolytic activity; (ii) an increased activation and proliferation of Th17 cells, which have recently been shown to have anti-viral effects and also indirectly attract neutrophils; and (iii) decreased activation of IL-4-producing CD4+ T cells - which are associated with enhanced RSV disease - and reduced proliferation of total CD4+ T cells. Except for total CD4+ T cell proliferation, none of the T cell effects appeared to be due to increased IFN-I signaling. In the infected DC, deletion of the NS1 and NS2 genes strongly up-regulated the expression of cytokines and other molecules involved in DC maturation. This was partly IFN-I-independent, and thus might account for the T cell effects. Taken together, these data demonstrate that the NS1 protein suppresses proliferation and activation of two of the protective cell populations (CD103+ CD8+ T cells and Th17 cells), and promotes proliferation and activation of Th2 cells that can enhance RSV disease.

Collaboration


Dive into the Ursula J. Buchholz's collaboration.

Top Co-Authors

Avatar

Peter L. Collins

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Brian R. Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cindy Luongo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ruth A. Karron

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shirin Munir

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Cyril Le Nouën

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mario H. Skiadopoulos

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexander Bukreyev

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Lijuan Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stéphane Biacchesi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge