Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ursula Straschil is active.

Publication


Featured researches published by Ursula Straschil.


Cell Host & Microbe | 2010

The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission

Rita Tewari; Ursula Straschil; Alex Bateman; Ulrike Böhme; Inna Cherevach; Peng Gong; Arnab Pain; Oliver Billker

Summary Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.


Antimicrobial Agents and Chemotherapy | 2013

Male and Female Plasmodium falciparum Mature Gametocytes Show Different Responses to Antimalarial Drugs

Michael J. Delves; Andrea Ruecker; Ursula Straschil; Joël Lelièvre; Sara R. Marques; María José López-Barragán; Esperanza Herreros; Robert E. Sinden

ABSTRACT It is the mature gametocytes of Plasmodium that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of Plasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC50s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of Plasmodium falciparum (∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.


Molecular Microbiology | 2010

Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality

Ksenija Slavic; Ursula Straschil; Luc Reininger; Christian Doerig; Christophe Morin; Rita Tewari; Sanjeev Krishna

A Plasmodium falciparum hexose transporter (PfHT) has previously been shown to be a facilitative glucose and fructose transporter. Its expression in Xenopus laevis oocytes and the use of a glucose analogue inhibitor permitted chemical validation of PfHT as a novel drug target. Following recent re‐annotations of the P. falciparum genome, other putative sugar transporters have been identified. To investigate further if PfHT is the key supplier of hexose to P. falciparum and to extend studies to different stages of Plasmodium spp., we functionally analysed the hexose transporters of both the human parasite P. falciparum and the rodent parasite Plasmodium berghei using gene targeting strategies. We show here the essential function of pfht for the erythrocytic parasite growth as it was not possible to knockout pfht unless the gene was complemented by an episomal construct. Also, we show that parasites are rescued from the toxic effect of a glucose analogue inhibitor when pfht is overexpressed in these transfectants. We found that the rodent malaria parasite orthologue, P. berghei hexose transporter (PbHT) gene, was similarly refractory to knockout attempts. However, using a single cross‐over transfection strategy, we generated transgenic P. berghei parasites expressing a PbHT–GFP fusion protein suggesting that locus is amenable for gene targeting. Analysis of pbht‐gfp transgenic parasites showed that PbHT is constitutively expressed through all the stages in the mosquito host in addition to asexual stages. These results provide genetic support for prioritizing PfHT as a target for novel antimalarials that can inhibit glucose uptake and kill parasites, as well as unveiling the expression of this hexose transporter in mosquito stages of the parasite, where it is also likely to be critical for survival.


Antimicrobial Agents and Chemotherapy | 2014

A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs

Andrea Ruecker; Derrick K. Mathias; Ursula Straschil; Thomas S. Churcher; Rhoel R. Dinglasan; Didier Leroy; Robert E. Sinden; Michael J. Delves

ABSTRACT Malaria elimination will require interventions that prevent parasite transmission from the human host to the mosquito. Experimentally, this is usually determined by the expensive and laborious Plasmodium falciparum standard membrane feeding assay (PfSMFA), which has limited utility for high-throughput drug screening. In response, we developed the P. falciparum dual gamete formation assay (PfDGFA), which faithfully simulates the initial stages of the PfSMFA in vitro. It utilizes a dual readout that individually and simultaneously reports on the functional viability of male and female mature stage V gametocytes. To validate, we screen the Medicines for Malaria Venture (MMV) Malaria Box library with the PfDGFA. Unique to this assay, we find compounds that target male gametocytes only and also compounds with reversible and irreversible activity. Most importantly, we show that compound activity in the PfDGFA accurately predicts activity in PfSMFAs, which validates and supports its adoption into the transmission-stage screening pipeline.


Scientific Reports | 2015

Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum

Melissa C. Kapulu; Dari F. Da; Kazutoyo Miura; Yuanyuan Li; Andrew M. Blagborough; Thomas S. Churcher; Daria Nikolaeva; Andrew R. Williams; Anna L. Goodman; Ibrahim Sangaré; Alison V. Turner; Matthew G. Cottingham; Alfredo Nicosia; Ursula Straschil; Takafumi Tsuboi; Sarah C. Gilbert; Carole A. Long; Robert E. Sinden; Simon J. Draper; Adrian V. S. Hill; Anna Cohuet; Sumi Biswas

Malaria transmission-blocking vaccines (TBVs) target the development of Plasmodium parasites within the mosquito, with the aim of preventing malaria transmission from one infected individual to another. Different vaccine platforms, mainly protein-in-adjuvant formulations delivering the leading candidate antigens, have been developed independently and have reported varied transmission-blocking activities (TBA). Here, recombinant chimpanzee adenovirus 63, ChAd63, and modified vaccinia virus Ankara, MVA, expressing AgAPN1, Pfs230-C, Pfs25, and Pfs48/45 were generated. Antibody responses primed individually against all antigens by ChAd63 immunization in BALB/c mice were boosted by the administration of MVA expressing the same antigen. These antibodies exhibited a hierarchy of inhibitory activity against the NF54 laboratory strain of P. falciparum in Anopheles stephensi mosquitoes using the standard membrane feeding assay (SMFA), with anti-Pfs230-C and anti-Pfs25 antibodies giving complete blockade. The observed rank order of inhibition was replicated against P. falciparum African field isolates in A. gambiae in direct membrane feeding assays (DMFA). TBA achieved was IgG concentration dependent. This study provides the first head-to-head comparative analysis of leading antigens using two different parasite sources in two different vector species, and can be used to guide selection of TBVs for future clinical development using the viral-vectored delivery platform.


Cell Host & Microbe | 2014

Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation.

David S. Guttery; Benoit Poulin; Abhinay Ramaprasad; Richard J. Wall; David J. P. Ferguson; Declan Brady; Eva Maria Patzewitz; Sarah Whipple; Ursula Straschil; Megan H. Wright; Alyaa Mohamed; Anand Radhakrishnan; Stefan T. Arold; Edward W. Tate; Anthony A. Holder; Bill Wickstead; Arnab Pain; Rita Tewari

Summary Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria.


PLOS Pathogens | 2012

A unique protein phosphatase with kelch-like domains(PPKL) in plasmodium modulates ookinete differentiation, motility and invasion

David S. Guttery; Benoit Poulin; David J. P. Ferguson; Balázs Szöőr; Bill Wickstead; Paula L. Carroll; Chandra Ramakrishnan; Declan Brady; Eva-Maria Patzewitz; Ursula Straschil; Lev Solyakov; Judith L. Green; Robert E. Sinden; Andrew B. Tobin; Anthony A. Holder; Rita Tewari

Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl− mutants, with global phosphorylation studies of ookinete differentiation from 1.5–24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.


Clinical Science | 2011

Regulation of IL-17 in chronic inflammation in the human lung

Carol Pridgeon; Laurence Bugeon; Louise E. Donnelly; Ursula Straschil; Susan J. Tudhope; Peter S. Fenwick; Jonathan R. Lamb; Peter J. Barnes; Margaret J. Dallman

The regulation of human Th17 cell effector function by Treg cells (regulatory T-cells) is poorly understood. In the present study, we report that human Treg (CD4(+)CD25(+)) cells inhibit the proliferative response of Th17 cells but not their capacity to secrete IL (interleukin)-17. However, they could inhibit proliferation and cytokine production by Th1 and Th2 cells as determined by IFN-γ (interferon-γ) and IL-5 biosynthesis. Currently, as there is interest in the role of IL-17-producing cells and Treg cells in chronic inflammatory diseases in humans, we investigated the presence of CD4(+)CD25(+) T-cells and IL-17 in inflammation in the human lung. Transcripts for IL-17 were expressed in mononuclear cells and purified T-cells from lung tissue of patients with chronic pulmonary inflammation and, when activated, these cells secrete soluble protein. The T-cell-specific transcription factors RORCv2 (retinoic acid-related orphan receptor Cv2; for Th17) and FOXP3 (forkhead box P3; for Treg cells) were enriched in the T-cell fraction of lung mononuclear cells. Retrospective stratification of the patient cohort into those with COPD (chronic obstructive pulmonary disease) and non-COPD lung disease revealed no difference in the expression of IL-17 and IL-23 receptor between the groups. We observed that CD4(+)CD25(+) T-cells were present in comparable numbers in COPD and non-COPD lung tissue and with no correlation between the presence of CD4(+)CD25(+) T-cells and IL-17-producing cells. These results suggest that IL-17-expressing cells are present in chronically inflamed lung tissue, but there is no evidence to support this is due to the recruitment or expansion of Treg cells.


Antimicrobial Agents and Chemotherapy | 2011

Use of a Selective Inhibitor To Define the Chemotherapeutic Potential of the Plasmodial Hexose Transporter in Different Stages of the Parasite's Life Cycle

Ksenija Slavic; Michael J. Delves; Miguel Prudêncio; Arthur M. Talman; Ursula Straschil; Elvira T. Derbyshire; Zhengyao Xu; Robert E. Sinden; Maria M. Mota; Christophe Morin; Rita Tewari; Sanjeev Krishna; Henry M. Staines

ABSTRACT During blood infection, malarial parasites use d-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of d-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasites development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a d-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of d-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC50) of 11 μM. This process was insensitive to the external d-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC50s in the region of 250 μM (the latter in a d-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.


PLOS Pathogens | 2012

A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

David S. Guttery; David J. P. Ferguson; Benoit Poulin; Zhengyao Xu; Ursula Straschil; Onny Klop; Lev Solyakov; Sara M. Sandrini; Declan Brady; Conrad A. Nieduszynski; Chris J. Janse; Anthony A. Holder; Andrew B. Tobin; Rita Tewari

Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.

Collaboration


Dive into the Ursula Straschil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Tewari

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake Baum

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Poulin

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge