Urszula Eksmond
Francis Crick Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Urszula Eksmond.
Nature | 2012
George R. Young; Urszula Eksmond; Rosalba Salcedo; Lena Alexopoulou; Jonathan P. Stoye; George Kassiotis
The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracts, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome. The long-term consequences for the host of interactions with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential effect of one microbial symbiont on another is even less clear. Here we study the control of ERVs in the commonly used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic MLV in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immunodeficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.
Journal of Immunology | 2008
Rute Marques; Inês Antunes; Urszula Eksmond; Jonathan P. Stoye; Kim J. Hasenkrug; George Kassiotis
Although the adaptive immune response almost invariably fails to completely eliminate retroviral infections, it can exert significant protection from disease and long-term control of viral replication. Friend virus (FV), a mouse retrovirus, causes persistent infection in all strains of mice and erythroleukaemia in susceptible strains, the course of which can be strongly influenced by both genetic and extrinsic factors. In this study we examine the impact of coinfection on the requirements for immune control of FV infection. We show that congenic C57BL/6 mice, in which the introduction of an allele of the Friend virus susceptibility 2 gene provides the potential for FV-induced leukemia development, effectively resist FV infection, and both T cell- and Ab-dependent mechanisms contribute to their resistance. However, we further demonstrate that coinfection with lactate dehydrogenase-elevating virus (LDV) renders these otherwise immunocompetent mice highly susceptible to FV infection and subsequent disease. The presence of LDV delays induction of FV-specific neutralizing Abs and counteracts the protective contribution of adaptive immunity. Importantly, the disease-enhancing effect of LDV coinfection requires the presence of a polyclonal B cell repertoire and is reproduced by direct polyclonal B cell activation. Thus, immune activation by coinfecting pathogens or their products can contribute to the pathogenicity of retroviral infection.
PLOS Pathogens | 2012
George R. Young; Mickaël J.-Y. Ploquin; Urszula Eksmond; Munisch Wadwa; Jonathan P. Stoye; George Kassiotis
Effective T cell responses can decisively influence the outcome of retroviral infection. However, what constitutes protective T cell responses or determines the ability of the host to mount such responses is incompletely understood. Here we studied the requirements for development and induction of CD4+ T cells that were essential for immunity to Friend virus (FV) infection of mice, according to their TCR avidity for an FV-derived epitope. We showed that a self peptide, encoded by an endogenous retrovirus, negatively selected a significant fraction of polyclonal FV-specific CD4+ T cells and diminished the response to FV infection. Surprisingly, however, CD4+ T cell-mediated antiviral activity was fully preserved. Detailed repertoire analysis revealed that clones with low avidity for FV-derived peptides were more cross-reactive with self peptides and were consequently preferentially deleted. Negative selection of low-avidity FV-reactive CD4+ T cells was responsible for the dominance of high-avidity clones in the response to FV infection, suggesting that protection against the primary infecting virus was mediated exclusively by high-avidity CD4+ T cells. Thus, although negative selection reduced the size and cross-reactivity of the available FV-reactive naïve CD4+ T cell repertoire, it increased the overall avidity of the repertoire that responded to infection. These findings demonstrate that self proteins expressed by replication-defective endogenous retroviruses can heavily influence the formation of the TCR repertoire reactive with exogenous retroviruses and determine the avidity of the response to retroviral infection. Given the overabundance of endogenous retroviruses in the human genome, these findings also suggest that endogenous retroviral proteins, presented by products of highly polymorphic HLA alleles, may shape the human TCR repertoire that reacts with exogenous retroviruses or other infecting pathogens, leading to interindividual heterogeneity.
Journal of Immunology | 2011
Mickaël J.-Y. Ploquin; Urszula Eksmond; George Kassiotis
The T cell-dependent B cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T cell responses to self- or tumor Ags are often suppressed by B cells. In this study, we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for Ag and interaction with B cells determine distinct aspects of the primary CD4+ T cell response to Friend virus infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for Ag facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for Ag. By reducing or preventing B cell interaction, we found that B cells promoted Tfh differentiation, induced programmed death 1 expression, and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T cell-mediated immune pathology, at the detriment of CD4+ T cell-mediated protective immunity. Our results suggest that B cell presentation of vaccine Ags could be manipulated to direct the appropriate CD4+ T cell response.
Journal of Biology | 2009
Rute Marques; Adam Williams; Urszula Eksmond; Andy Wullaert; Nigel Killeen; Manolis Pasparakis; Dimitris Kioussis; George Kassiotis
Background In addition to progressive CD4+ T cell immune deficiency, HIV infection is characterized by generalized immune activation, thought to arise from increased microbial exposure resulting from diminishing immunity. Results Here we report that, in a virus-free mouse model, conditional ablation of activated CD4+ T cells, the targets of immunodeficiency viruses, accelerates their turnover and produces CD4+ T cell immune deficiency. More importantly, activated CD4+ T cell killing also results in generalized immune activation, which is attributable to regulatory CD4+ T cell insufficiency and preventable by regulatory CD4+ T cell reconstitution. Immune activation in this model develops independently of microbial exposure. Furthermore, microbial translocation in mice with conditional disruption of intestinal epithelial integrity affects myeloid but not T cell homeostasis. Conclusions Although neither ablation of activated CD4+ T cells nor disruption of intestinal epithelial integrity in mice fully reproduces every aspect of HIV-associated immune dysfunction in humans, ablation of activated CD4+ T cells, but not disruption of intestinal epithelial integrity, approximates the two key immune alterations in HIV infection: CD4+ T cell immune deficiency and generalized immune activation. We therefore propose activated CD4+ T cell killing as a common etiology for both immune deficiency and activation in HIV infection. See minireview http://www.jbiol.com/content/8/10/91
Cell Reports | 2016
Tiziano Donnarumma; George R. Young; Julia Merkenschlager; Urszula Eksmond; Nadine Bongard; Stephen L. Nutt; Claude Boyer; Ulf Dittmer; Vu Thuy Khanh Le-Trilling; Mirko Trilling; Wibke Bayer; George Kassiotis
Summary CD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions.
Nature Communications | 2016
Julia Merkenschlager; Mickaël J.-Y. Ploquin; Urszula Eksmond; Rakieb Andargachew; Georgina Thorborn; Andrew Filby; Marion Pepper; Brian D. Evavold; George Kassiotis
Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal selection of lymphocytes with the appropriate antigen reactivity. Current models attribute T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either foreign or self peptides. Here, we report that clonal selection of CD4+ T cells is also extrinsically regulated by B cells. In response to viral infection, the antigen-specific TCR repertoire is progressively diversified by staggered clonotypic expansion, according to functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by B-cell activation. B cells clonotypically diversify the CD4+ T-cell response also to vaccination or tumour challenge, revealing a common effect.
Journal of Immunology | 2012
Amanda K. Duley; Mickaël J.-Y. Ploquin; Urszula Eksmond; Christoph G. Ammann; Ronald J. Messer; Lara Myers; Kim J. Hasenkrug; George Kassiotis
The immune system is tasked with defending against a myriad of microbial infections, and its response to a given infectious microbe may be strongly influenced by coinfection with another microbe. It was shown that infection of mice with lactate dehydrogenase-elevating virus (LDV) impairs early adaptive immune responses to Friend virus (FV) coinfection. To investigate the mechanism of this impairment, we examined LDV-induced innate immune responses and found LDV-specific induction of IFN-α and IFN-γ. LDV-induced IFN-α had little effect on FV infection or immune responses, but unexpectedly, LDV-induced IFN-γ production dampened Th1 adaptive immune responses and enhanced FV infection. Two distinct effects were identified. First, LDV-induced IFN-γ signaling indirectly modulated FV-specific CD8+ T cell responses. Second, intrinsic IFN-γ signaling in B cells promoted polyclonal B cell activation and enhanced early FV infection, despite promotion of germinal center formation and neutralizing Ab production. Results from this model reveal that IFN-γ production can have detrimental effects on early adaptive immune responses and virus control.
Journal of Immunology | 2014
Georgina Thorborn; Mickaël J.-Y. Ploquin; Urszula Eksmond; Rebecca Pike; Wibke Bayer; Ulf Dittmer; Kim J. Hasenkrug; Marion Pepper; George Kassiotis
The mechanisms whereby different vaccines may expand distinct Ag-specific T cell clonotypes or induce disparate degrees of protection are incompletely understood. We found that several delivery modes of a model retroviral Ag, including natural infection, preferentially expanded initially rare high-avidity CD4+ T cell clonotypes, known to mediate protection. In contrast, the same Ag vectored by human adenovirus serotype 5 induced clonotypic expansion irrespective of avidity, eliciting a predominantly low-avidity response. Nonselective clonotypic expansion was caused by relatively weak adenovirus serotype 5–vectored Ag presentation and was reproduced by replication-attenuated retroviral vaccines. Mechanistically, the potency of Ag presentation determined the speed and, consequently, completion of the CD4+ T cell response. Whereas faster completion retained the initial advantage of high-avidity clonotypes, slower completion permitted uninhibited accumulation of low-avidity clonotypes. These results highlighted the importance of Ag presentation patterns in determining the clonotypic composition of vaccine-induced T cell responses and ultimately the efficacy of vaccination.
Journal of Virology | 2017
Urszula Eksmond; Bryony Jenkins; Julia Merkenschlager; Walther Mothes; Jonathan P. Stoye; George Kassiotis
ABSTRACT The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activity to distinct envelope glycoproteins. Concurrent mutation of these two key residues (E14R and A20F) in the envelope glycoprotein of the Friend murine leukemia virus (F-MLV) ISD has been reported to abolish its immunosuppressive activity, without affecting its fusogenicity, and to weaken the ability of the virus to replicate specifically in immunocompetent hosts. Here, we show that mutation of these key residues did, in fact, result in a substantial loss of F-MLV infectivity, independently of host immunity, challenging whether associations exist between the two. Notably, a loss of infectivity incurred by the F-MLV mutant with the E14R and A20F double ISD mutation was conditional on expression of the ecotropic envelope receptor murine cationic amino acid transporter-1 (mCAT1) in the virus-producing cell. Indeed, the F-MLV mutant retained infectivity when it was produced by human cells, which naturally lack mCAT1 expression, but not by murine cells. Furthermore, mCAT1 overexpression in human cells impaired the infectivity of both the F-MLV double mutant and the wild-type F-MLV strain, suggesting a finely tuned relationship between the levels of mCAT1 in the producer cell and the infectivity of the virions produced. An adverse effect on this relationship, rather than disruption of the putative ISD, is therefore more likely to explain the loss of F-MLV infectivity incurred by mutations in key ISD residues E14 and A20. IMPORTANCE Retroviruses can interact with their hosts in ways that, although not entirely understood, can greatly influence their pathogenic potential. One such example is a putative immunosuppressive activity, which has been mapped to a conserved domain of the retroviral envelope glycoprotein of several exogenous as well as endogenous retroviruses. In this study, mutations naturally found in some envelope glycoproteins lacking immunosuppressive activity were shown to affect retrovirus infectivity only if the host cell that produced the retrovirus also expressed the cellular entry receptor. These findings shed light on a novel role for this conserved domain in providing the necessary stability to the envelope glycoprotein in order to withstand the interaction with the cellular receptor during virus formation. This function of the domain is critical for further elucidation of the mechanism of immunosuppression mediated by the retroviral envelope glycoprotein.