Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Urszula M. Polanska is active.

Publication


Featured researches published by Urszula M. Polanska.


Science Translational Medicine | 2016

Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo

Susan Ashton; Young Ho Song; Jim Nolan; Elaine Cadogan; Jim Murray; Rajesh Odedra; John R. Foster; Peter A. Hall; Susan Low; Paula Taylor; Rebecca Ellston; Urszula M. Polanska; Joanne Wilson; Colin Howes; Aaron Smith; Richard J. A. Goodwin; John G. Swales; Nicole Strittmatter; Zoltan Takats; Anna Nilsson; Per E. Andrén; Dawn Trueman; Mike Walker; Corinne Reimer; Greg Troiano; Donald Parsons; David De Witt; Marianne Ashford; Jeff Hrkach; Stephen E. Zale

A nanoparticle formulation of an Aurora B kinase inhibitor uses ion pairing to achieve controlled release and efficacious, nontoxic target inhibition in tumors. Accurin nanoparticles dutifully deliver drug A class of drugs, called kinase inhibitors, could stop cancer in its tracks…if only these drugs could reach the tumors, stay for a while, and not be toxic. Hypothesizing that a nanoparticle formulation would solve the inhibitors’ woes, Ashton and colleagues investigated several different compositions of so-called Accurins—polymeric particles that encapsulate charged drugs through ion pairing. An Aurora B kinase, once formulated in Accurins, demonstrated a much-improved therapeutic index and preclinical efficacy compared with its parent molecule, when administered to rats and mice bearing human tumors. The Accurins allowed for sustained release of the drug over days, and did not have the same blood toxicity seen with the parent drug. A phase 1 trial is the next step for this nanomedicine, and additional preclinical studies will reveal whether such nanoformulations can improve the tolerability and efficacy of the broader class of molecularly targeted cancer therapeutics, including cell cycle inhibitors. Efforts to apply nanotechnology in cancer have focused almost exclusively on the delivery of cytotoxic drugs to improve therapeutic index. There has been little consideration of molecularly targeted agents, in particular kinase inhibitors, which can also present considerable therapeutic index limitations. We describe the development of Accurin polymeric nanoparticles that encapsulate the clinical candidate AZD2811, an Aurora B kinase inhibitor, using an ion pairing approach. Accurins increase biodistribution to tumor sites and provide extended release of encapsulated drug payloads. AZD2811 nanoparticles containing pharmaceutically acceptable organic acids as ion pairing agents displayed continuous drug release for more than 1 week in vitro and a corresponding extended pharmacodynamic reduction of tumor phosphorylated histone H3 levels in vivo for up to 96 hours after a single administration. A specific AZD2811 nanoparticle formulation profile showed accumulation and retention in tumors with minimal impact on bone marrow pathology, and resulted in lower toxicity and increased efficacy in multiple tumor models at half the dose intensity of AZD1152, a water-soluble prodrug of AZD2811. These studies demonstrate that AZD2811 can be formulated in nanoparticles using ion pairing agents to give improved efficacy and tolerability in preclinical models with less frequent dosing. Accurins specifically, and nanotechnology in general, can increase the therapeutic index of molecularly targeted agents, including kinase inhibitors targeting cell cycle and oncogenic signal transduction pathways, which have to date proved toxic in humans.


Molecular Cancer Therapeutics | 2015

AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules

Sylvie Guichard; Jon Owen Curwen; Teeru Bihani; Celina D'Cruz; James W.T. Yates; Michael Grondine; Zoe Howard; Barry R. Davies; Graham Bigley; Teresa Klinowska; Kurt Gordon Pike; Martin Pass; Christine M. Chresta; Urszula M. Polanska; Robert McEwen; Oona Delpuech; Stephen Green; Sabina Cosulich

mTOR is an atypical serine threonine kinase involved in regulating major cellular functions, such as nutrients sensing, growth, and proliferation. mTOR is part of the multiprotein complexes mTORC1 and mTORC2, which have been shown to play critical yet functionally distinct roles in the regulation of cellular processes. Current clinical mTOR inhibitors only inhibit the mTORC1 complex and are derivatives of the macrolide rapamycin (rapalogs). Encouraging effects have been observed with rapalogs in estrogen receptor–positive (ER+) breast cancer patients in combination with endocrine therapy, such as aromatase inhibitors. AZD2014 is a small-molecule ATP competitive inhibitor of mTOR that inhibits both mTORC1 and mTORC2 complexes and has a greater inhibitory function against mTORC1 than the clinically approved rapalogs. Here, we demonstrate that AZD2014 has broad antiproliferative effects across multiple cell lines, including ER+ breast models with acquired resistance to hormonal therapy and cell lines with acquired resistance to rapalogs. In vivo, AZD2014 induces dose-dependent tumor growth inhibition in several xenograft and primary explant models. The antitumor activity of AZD2014 is associated with modulation of both mTORC1 and mTORC2 substrates, consistent with its mechanism of action. In combination with fulvestrant, AZD2014 induces tumor regressions when dosed continuously or using intermittent dosing schedules. The ability to dose AZD2014 intermittently, together with its ability to block signaling from both mTORC1 and mTORC2 complexes, makes this compound an ideal candidate for combining with endocrine therapies in the clinic. AZD2014 is currently in phase II clinical trials. Mol Cancer Ther; 14(11); 2508–18. ©2015 AACR.


Blood | 2017

Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL

Tabea Erdmann; Pavel Klener; James T. Lynch; Michael Grau; Petra Vockova; Jan Molinsky; Diana Tuskova; Kevin Hudson; Urszula M. Polanska; Michael Grondine; Michele Mayo; Beiying Dai; Matthias Pfeifer; Kristian Erdmann; Daniela Schwammbach; Myroslav Zapukhlyak; Annette M. Staiger; German Ott; Wolfgang E. Berdel; Barry R. Davies; Francisco Cruzalegui; Marek Trneny; Peter Lenz; Simon T. Barry; Georg Lenz

Activated B-cell-like (ABC) and germinal center B-cell-like diffuse large B-cell lymphoma (DLBCL) represent the 2 major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these 2 subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) α/δ (PI3Kα/δ) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs irrespective of their molecular subtype. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor κB signaling, prompting us to combine AZD8835 with the Brutons tyrosine kinase inhibitor ibrutinib. This combination was synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively, our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors.


Molecular Cancer Therapeutics | 2015

AKT Antagonist AZD5363 Influences Estrogen Receptor Function in Endocrine-Resistant Breast Cancer and Synergizes with Fulvestrant (ICI182780) In Vivo

Ricardo Ribas; Sunil Pancholi; Stephanie K. Guest; Elisabetta Marangoni; Qiong Gao; Aurélie Thuleau; Nikiana Simigdala; Urszula M. Polanska; Hayley Campbell; Aradhana Rani; Gianmaria Liccardi; Stephen R. D. Johnston; Barry R. Davies; Mitch Dowsett; Lesley-Ann Martin

PI3K/AKT/mTOR signaling plays an important role in breast cancer. Its interaction with estrogen receptor (ER) signaling becomes more complex and interdependent with acquired endocrine resistance. Targeting mTOR combined with endocrine therapy has shown clinical utility; however, a negative feedback loop exists downstream of PI3K/AKT/mTOR. Direct blockade of AKT together with endocrine therapy may improve breast cancer treatment. AZD5363, a novel pan-AKT kinase catalytic inhibitor, was examined in a panel of ER+ breast cancer cell lines (MCF7, HCC1428, T47D, ZR75.1) adapted to long-term estrogen deprivation (LTED) or tamoxifen (TamR). AZD5363 caused a dose-dependent decrease in proliferation in all cell lines tested (GI50 < 500 nmol/L) except HCC1428 and HCC1428-LTED. T47D-LTED and ZR75-LTED were the most sensitive of the lines (GI50 ∼100 nmol/L). AZD5363 resensitized TamR cells to tamoxifen and acted synergistically with fulvestrant. AZD5363 decreased p-AKT/mTOR targets leading to a reduction in ERα-mediated transcription in a context-specific manner and concomitant decrease in recruitment of ER and CREB-binding protein (CBP) to estrogen response elements located on the TFF1, PGR, and GREB1 promoters. Furthermore, AZD5363 reduced expression of cell-cycle–regulatory proteins. Global gene expression highlighted ERBB2-ERBB3, ERK5, and IGFI signaling pathways driven by MYC as potential feedback-loops. Combined treatment with AZD5363 and fulvestrant showed synergy in an ER+ patient-derived xenograft and delayed tumor progression after cessation of therapy. These data support the combination of AZD5363 with fulvestrant as a potential therapy for breast cancer that is sensitive or resistant to E-deprivation or tamoxifen and that activated AKT is a determinant of response, supporting the need for clinical evaluation. Mol Cancer Ther; 14(9); 2035–48. ©2015 AACR.


Molecular Cancer Therapeutics | 2016

Intermittent High-Dose Scheduling of AZD8835, a Novel Selective Inhibitor of PI3Kα and PI3Kδ, Demonstrates Treatment Strategies for PIK3CA-Dependent Breast Cancers

Kevin Hudson; Urs Hancox; Cath Trigwell; Robert McEwen; Urszula M. Polanska; Myria Nikolaou; Pablo Morentin Gutierrez; Alvaro Avivar-Valderas; Oona Delpuech; Phillippa Dudley; Lyndsey Hanson; Rebecca Ellston; Alys Jones; Marie Cumberbatch; Sabina Cosulich; Lara Ward; Francisco Cruzalegui; Stephen Green

The PIK3CA gene, encoding the p110α catalytic unit of PI3Kα, is one of the most frequently mutated oncogenes in human cancer. Hence, PI3Kα is a target subject to intensive efforts in identifying inhibitors and evaluating their therapeutic potential. Here, we report studies with a novel PI3K inhibitor, AZD8835, currently in phase I clinical evaluation. AZD8835 is a potent inhibitor of PI3Kα and PI3Kδ with selectivity versus PI3Kβ, PI3Kγ, and other kinases that preferentially inhibited growth in cells with mutant PIK3CA status, such as in estrogen receptor–positive (ER+) breast cancer cell lines BT474, MCF7, and T47D (sub-μmol/L GI50s). Consistent with this, AZD8835 demonstrated antitumor efficacy in corresponding breast cancer xenograft models when dosed continuously. In addition, an alternative approach of intermittent high-dose scheduling (IHDS) was explored given our observations that higher exposures achieved greater pathway inhibition and induced apoptosis. Indeed, using IHDS, monotherapy AZD8835 was able to induce tumor xenograft regression. Furthermore, AZD8835 IHDS in combination with other targeted therapeutic agents further enhanced antitumor activity (up to 92% regression). Combination partners were prioritized on the basis of our mechanistic insights demonstrating signaling pathway cross-talk, with a focus on targeting interdependent ER and/or CDK4/6 pathways or alternatively a node (mTOR) in the PI3K-pathway, approaches with demonstrated clinical benefit in ER+ breast cancer patients. In summary, AZD8835 IHDS delivers strong antitumor efficacy in a range of combination settings and provides a promising alternative to continuous dosing to optimize the therapeutic index in patients. Such schedules merit clinical evaluation. Mol Cancer Ther; 15(5); 877–89. ©2016 AACR.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of 1-(4-(5-(5-amino-6-(5-tert-butyl-1,3,4-oxadiazol-2-yl)pyrazin-2-yl)-1-ethyl-1,2,4-triazol-3-yl)piperidin-1-yl)-3-hydroxypropan-1-one (AZD8835): A potent and selective inhibitor of PI3Kα and PI3Kδ for the treatment of cancers

Bernard Barlaam; Sabina Cosulich; Benedicte Delouvrie; Rebecca Ellston; Martina Fitzek; Hervé Germain; Stephen Green; Urs Hancox; Craig S. Harris; Kevin Hudson; Christine Lambert-van der Brempt; Honorine Lebraud; Françoise Magnien; Maryannick Lamorlette; Antoine Le Griffon; Rémy Morgentin; Gilles Ouvry; Ken Page; Georges Pasquet; Urszula M. Polanska; Linette Ruston; Twana Saleh; Michel Vautier; Lara Ward

Starting from potent inhibitors of PI3Kα having poor general kinase selectivity (e.g., 1 and 2), optimisation of this series led to the identification of 25, a potent inhibitor of PI3Kα (wild type, E545K and H1047R mutations) and PI3Kδ, selective versus PI3Kβ and PI3Kγ, with excellent general kinase selectivity. Compound 25 displayed low metabolic turnover and suitable physical properties for oral administration. In vivo, compound 25 showed pharmacodynamic modulation of AKT phosphorylation and near complete inhibition of tumour growth (93% tumour growth inhibition) in a murine H1047R PI3Kα mutated SKOV-3 xenograft tumour model after chronic oral administration at 25mg/kg b.i.d. Compound 25, also known as AZD8835, is currently in phase I clinical trials.


Molecular Cancer Therapeutics | 2018

Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long term growth inhibition in estrogen receptor positive breast cancer

Chrysiis Michaloglou; Claire Crafter; Rasmus Siersbæk; Oona Delpuech; Jon Owen Curwen; Larissa S. Carnevalli; Anna Staniszewska; Urszula M. Polanska; Azadeh Cheraghchi-Bashi; Mandy Lawson; Igor Chernukhin; Robert McEwen; Jason S. Carroll; Sabina Cosulich

The cyclin dependent kinase (CDK)–retinoblastoma (RB)–E2F pathway plays a critical role in the control of cell cycle in estrogen receptor–positive (ER+) breast cancer. Small-molecule inhibitors of CDK4/6 have shown promise in this tumor type in combination with hormonal therapies, reflecting the particular dependence of this subtype of cancer on cyclin D1 and E2F transcription factors. mTOR inhibitors have also shown potential in clinical trials in this disease setting. Recent data have suggested cooperation between the PI3K/mTOR pathway and CDK4/6 inhibition in preventing early adaptation and eliciting growth arrest, but the mechanisms of the interplay between these pathways have not been fully elucidated. Here we show that profound and durable inhibition of ER+ breast cancer growth is likely to require multiple hits on E2F-mediated transcription. We demonstrate that inhibition of mTORC1/2 does not affect ER function directly, but does cause a decrease in cyclin D1 protein, RB phosphorylation, and E2F-mediated transcription. Combination of an mTORC1/2 inhibitor with a CDK4/6 inhibitor results in more profound effects on E2F-dependent transcription, which translates into more durable growth arrest and a delay in the onset of resistance. Combined inhibition of mTORC1/2, CDK4/6, and ER delivers even more profound and durable regressions in breast cancer cell lines and xenografts. Furthermore, we show that CDK4/6 inhibitor–resistant cell lines reactivate the CDK–RB–E2F pathway, but remain sensitive to mTORC1/2 inhibition, suggesting that mTORC1/2 inhibitors may represent an option for patients that have relapsed on CDK4/6 therapy. Mol Cancer Ther; 17(5); 908–20. ©2018 AACR.


Clinical Cancer Research | 2017

Inhibiting PI3Kβ with AZD8186 Regulates Key Metabolic Pathways in PTEN-Null Tumors

James T. Lynch; Urszula M. Polanska; Oona Delpuech; Urs Hancox; Antonio G. Trinidad; Filippos Michopoulos; Carol Lenaghan; Robert McEwen; James R. Bradford; Radek Polanski; Rebecca Ellston; Alvaro Avivar-Valderas; James Pilling; Anna Staniszewska; Marie Cumberbatch; Susan E. Critchlow; Francisco Cruzalegui; Simon T. Barry

Purpose: PTEN-null tumors become dependent on the PI3Kβ isoform and can be targeted by molecules such as the selective PI3Kβ inhibitor AZD8186. However, beyond the modulation of the canonical PI3K pathway, the consequences of inhibiting PI3Kβ are poorly defined. Experimental Design: To determine the broader impact of AZD8186 in PTEN-null tumors, we performed a genome-wide RNA-seq analysis of PTEN-null triple-negative breast tumor xenografts treated with AZD8186. Mechanistic consequences of AZD8186 treatment were examined across a number of PTEN-null cell lines and tumor models. Results: AZD8186 treatment resulted in modification of transcript and protein biomarkers associated with cell metabolism. We observed downregulation of cholesterol biosynthesis genes and upregulation of markers associated with metabolic stress. Downregulation of cholesterol biosynthesis proteins, such as HMGCS1, occurred in PTEN-null cell lines and tumor xenografts sensitive to AZD8186. Therapeutic inhibition of PI3Kβ also upregulated PDHK4 and increased PDH phosphorylation, indicative of reduced carbon flux into the TCA cycle. Consistent with this, metabolomic analysis revealed a number of changes in key carbon pathways, nucleotide, and amino acid biosynthesis. Conclusions: This study identifies novel mechanistic biomarkers of PI3Kβ inhibition in PTEN-null tumors supporting the concept that targeting PI3Kβ may exploit a metabolic dependency that contributes to therapeutic benefit in inducing cell stress. Considering these additional pathways will guide biomarker and combination strategies for this class of agents. Clin Cancer Res; 23(24); 7584–95. ©2017 AACR.


PLOS ONE | 2017

The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor

Juliana Maynard; Sally-Ann Emmas; Francois-Xavier Ble; Hervé Barjat; Emily Lawrie; Urs Hancox; Urszula M. Polanska; Alison Pritchard; Kevin Hudson

Background The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed. Results Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835. Conclusions Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake) for AZD8835 with a decrease in 18F-FDG uptake observed at only two hours post treatment. The decrease in 18F-FDG uptake was dose dependent and data showed excellent PK/PD correlation. This data supports and parallels observations obtained with this class of compounds in patients


Cancer Research | 2017

Abstract 4541: Understanding the dose and schedule dependence of efficacy for the Wee1 inhibitor AZD1775 in xenograft and patient derived explant models by mathematical modelling

James Yates; Elaine Cadogan; Jennifer I. Hare; Adina Hughes; Urszula M. Polanska; Mark J. O'Connor; Susan E. Critchlow

AZD1775 is a highly selective, small-molecule inhibitor of WEE1 being developed to treat patients with advanced solid tumors, as monotherapy and in combination with olaparib. Experimental Procedures Patient-derived explant (PDX) and xenografted models with a range of sensitivities to AZD1775 were tested for response to different doses and schedules of AZD1775. WEE1 inhibition was assessed by pCDK1 as a direct substrate of Wee1 and RRM2 as a surrogate of CDK2 activity. Concentration of AZD1775 in plasma was measured in the same animals. Mathematical models were developed to describe the relationship between drug exposure, biomarker modulation and resulting tumour growth inhibition. Results The PKPD relationship of both pCDK1 and RRM2 could be described by the mathematical model with significant delay between PK and RRM2 reduction due to this being a protein degradation event. Three factors influenced anti-tumour activity in the A427 xenograft and three TNBC PDX models, namely the AZD1775 dose, the number of consecutive days of dosing and the number of days between AZD1775 doses. The minimally effective preclinical dose with anti-tumour activity was 60 mg/kg od. TGI was seen to increase with increased days of consecutive AZD1775 dosing from 3 days on, such that a 5 days on/9 days off schedule was more efficacious than 3 days on/4 days off schedule for two weeks. A mathematical model successfully described this efficacy by using the predicted dose and schedule dependent reduction in pCDK1. Conclusions The insights from this predictive modelling informed the starting dose of 125mg BID AZD1775 on a 5 day on/9 day off schedule; with the clinical goal to optimize the days of consecutive AZD1775 dosing as well as the maximum tolerated dose. Citation Format: James W. Yates, Elaine Cadogan, Jennifer Hare, Adina Hughes, Urszula M. Polanska, Mark O9Connor, Susan E. Critchlow. Understanding the dose and schedule dependence of efficacy for the Wee1 inhibitor AZD1775 in xenograft and patient derived explant models by mathematical modelling [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4541. doi:10.1158/1538-7445.AM2017-4541

Collaboration


Dive into the Urszula M. Polanska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge