Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Usama Ramadan Abdelmohsen is active.

Publication


Featured researches published by Usama Ramadan Abdelmohsen.


Marine Drugs | 2010

Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

Usama Ramadan Abdelmohsen; Sheila Marie Pimentel-Elardo; Amro Hanora; Mona Radwan; Soad H. Abou-El-Ela; Safwat A. Ahmed; Ute Hentschel

Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.


Plant Physiology | 2011

Cytokinins Mediate Resistance against Pseudomonas syringae in Tobacco through Increased Antimicrobial Phytoalexin Synthesis Independent of Salicylic Acid Signaling

Dominik K. Großkinsky; Muhammad Naseem; Usama Ramadan Abdelmohsen; Nicole Plickert; Thomas Engelke; Thomas Griebel; Jürgen Zeier; Ondřej Novák; Miroslav Strnad; Hartwig W. Pfeifhofer; Eric van der Graaff; Uwe K. Simon; Thomas Roitsch

Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity. A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci. This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins. The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol. The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P. syringae. In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity. It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance. The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth. The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed.


Natural Product Reports | 2014

Diversity, abundance and natural products of marine sponge-associated actinomycetes

Usama Ramadan Abdelmohsen; Kristina Bayer; Ute Hentschel

Actinomycetes are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the diversity, abundance and methodological approaches targeting marine sponge-associated actinomycetes. Additionally, novel qPCR data on actinomycete abundances in different sponge species and other environmental sources are presented. The natural products literature is covered, and we are here reporting on their chemical structures, their biological activities, as well as the source organisms from which they were isolated.


Biotechnology Advances | 2015

Elicitation of secondary metabolism in actinomycetes

Usama Ramadan Abdelmohsen; Tanja Grkovic; Srikkanth Balasubramanian; Mohamed S. Kamel; Ronald J. Quinn; Ute Hentschel

Genomic sequence data have revealed the presence of a large fraction of putatively silent biosynthetic gene clusters in the genomes of actinomycetes that encode for secondary metabolites, which are not detected under standard fermentation conditions. This review focuses on the effects of biological (co-cultivation), chemical, as well as molecular elicitation on secondary metabolism in actinomycetes. Our review covers the literature until June 2014 and exemplifies the diversity of natural products that have been recovered by such approaches from the phylum Actinobacteria.


FEMS Microbiology Ecology | 2011

The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta

Hilde Angermeier; Janine Kamke; Usama Ramadan Abdelmohsen; Georg Krohne; Joseph R. Pawlik; Niels Lindquist; Ute Hentschel

The aim of this study was to examine sponge orange band (SOB) disease affecting the prominent Caribbean sponge Xestospongia muta. Scanning and transmission electron microscopy revealed that SOB is accompanied by the massive destruction of the pinacoderm. Chlorophyll a content and the main secondary metabolites, tetrahydrofurans, characteristic of X. muta, were significantly lower in bleached than in healthy tissues. Denaturing gradient gel electrophoresis using cyanobacteria-specific 16S rRNA gene primers revealed a distinct shift from the Synechococcus/Prochlorococcus clade of sponge symbionts towards several clades of unspecific cyanobacteria, including lineages associated with coral disease (i.e. Leptolyngbya sp.). Underwater infection experiments were conducted by transplanting bleached cores into healthy individuals, but revealed no signs of SOB development. This study provided no evidence for the involvement of a specific microbial pathogen as an etiologic agent of disease; hence, the cause of SOB disease in X. muta remains unidentified.


Marine Drugs | 2014

Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163

Yousef Dashti; Tanja Grkovic; Usama Ramadan Abdelmohsen; Ute Hentschel; Ronald J. Quinn

Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by 1H NMR. Ten known compounds, including angucycline, diketopiperazine and β-carboline derivatives 1–10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes.


Marine Drugs | 2014

Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49.

Usama Ramadan Abdelmohsen; Cheng Cheng; Christina Viegelmann; Tong Zhang; Tanja Grkovic; Safwat A. Ahmed; Ronald J. Quinn; Ute Hentschel; RuAngelie Edrada-Ebel

High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to evaluate the HRFTMS and NMR data of crude extracts from four different fermentation approaches. Statistical analysis identified the best culture one-strain-many-compounds (OSMAC) condition and extraction procedure, which was used for the isolation of novel bioactive metabolites. As a result, two new O-glycosylated angucyclines, named actinosporins A (1) and B (2), were isolated from the broth culture of Actinokineospora sp. strain EG49, which was cultivated from the Red Sea sponge Spheciospongia vagabunda. The structures of actinosporins A and B were determined by 1D- and 2D-NMR techniques, as well as high resolution tandem mass spectrometry. Testing for antiparasitic properties showed that actinosporin A exhibited activity against Trypanosoma brucei brucei with an IC50 value of 15 µM; however no activity was detected against Leishmania major and Plasmodium falciparum, therefore suggesting its selectivity against the parasite Trypanosoma brucei brucei; the causative agent of sleeping sickness.


Marine Drugs | 2012

Antioxidant and Anti-Protease Activities of Diazepinomicin from the Sponge-Associated Micromonospora Strain RV115

Usama Ramadan Abdelmohsen; Matthias Szesny; Eman Maher Othman; Tanja Schirmeister; Stephanie Grond; Helga Stopper; Ute Hentschel

Diazepinomicin is a dibenzodiazepine alkaloid with an unusual structure among the known microbial metabolites discovered so far. Diazepinomicin was isolated from the marine sponge-associated strain Micromonospora sp. RV115 and was identified by spectroscopic analysis and by comparison to literature data. In addition to its interesting preclinical broad-spectrum antitumor potential, we report here new antioxidant and anti-protease activities for this compound. Using the ferric reducing antioxidant power (FRAP) assay, a strong antioxidant potential of diazepinomicin was demonstrated. Moreover, diazepinomicin showed a significant antioxidant and protective capacity from genomic damage induced by the reactive oxygen species hydrogen peroxide in human kidney (HK-2) and human promyelocytic (HL-60) cell lines. Additionally, diazepinomicin inhibited the proteases rhodesain and cathepsin L at an IC50 of 70–90 µM. It also showed antiparasitic activity against trypomastigote forms of Trypanosoma brucei with an IC50 of 13.5 µM. These results showed unprecedented antioxidant and anti-protease activities of diazepinomicin, thus further highlighting its potential as a future drug candidate.


Marine Drugs | 2014

Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts

Lynsey MacIntyre; Tong Zhang; Christina Viegelmann; Ignacio Juarez Martinez; Cheng Te Cheng; Catherine Dowdells; Usama Ramadan Abdelmohsen; Christine Gernert; Ute Hentschel; RuAngelie Edrada-Ebel

Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.


Marine Drugs | 2014

Actinomycetes from red sea sponges: Sources for chemical and phylogenetic diversity

Usama Ramadan Abdelmohsen; Chen Yang; Hannes Horn; Dina A. Hajjar; Timothy Ravasi; Ute Hentschel

The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery.

Collaboration


Dive into the Usama Ramadan Abdelmohsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Cheng

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Horn

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge