Ushio Matsukura
Ministry of Agriculture, Forestry and Fisheries
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ushio Matsukura.
Euphytica | 2006
Noriaki Aoki; Takayuki Umemoto; Shinya Yoshida; Takashige Ishii; Osamu Kamijima; Ushio Matsukura; Naoyoshi Inouchi
The amount of long chains (LC) of amylopectin in high-amylose rice is thought to be one of the important determinants of its quality when cooked. A wide range of differences in LC content have been reported in rice varieties, which can be clearly divided into four classes based on LC and apparent amylose content: namely, amylose and LC-free, low or medium-amylose and low-LC, high-amylose and medium-LC, high-amylose and high-LC. However, genetic factors controlling LC content have not been fully understood. Here, we performed quantitative trait loci (QTL) analysis of LC content using 157 recombinant inbred lines (RILs) derived from a cross of a low-LC cultivar, Hyogokitanishiki, and a high-LC line, Hokuriku 142. By analyzing randomly selected 15 RILs, it was shown that high LC content (≥11%) was associated with high setback viscosity (≥200 RVU), and that low LC (≤ 3%) was associated with low setback viscosity (≤ 130 RVU), as measured by a Rapid Visco Analyzer. With setback viscosity as an indicator for LC content, QTL analysis was conducted using 60 DNA markers including a CAPS marker that distinguished Wxa and Wxb alleles coding for granule-bound starch synthase I (GBSSI or Wx protein), the enzyme working for amylose biosynthesis. Only one QTL with a peak log of likelihood score at the wx locus was detected, and no line showing setback viscosity corresponding to the medium-LC class appeared. The fact that wx mutants of Hokuriku 142 lacked LC in their rice starch supports the view that the functional Wx allele is indispensable for LC synthesis in addition to amylose synthesis in rice endosperm. We suggest three possible reasons why no line with medium-LC content was observed. First, the locus (loci) responsible for generation of medium-LC may be located very close to the wx locus and not able to be dissected by the population and DNA markers we used. Second, there may be special QTLs for medium-LC cultivars that do not exist in low- or high-LC cultivars. Third, medium-LC cultivars may have an as-yet unidentified Wx allele with lower capability in LC synthesis compared to the Wx allele in high-LC cultivars.
Archive | 1995
Akira Horigane; Masayoshi Kamio; Ushio Matsukura
Archive | 1997
Akira Horigane; Ushio Matsukura; Masayoshi Kamio
Agricultural and biological chemistry | 1984
Sonoe Ochiai Yanagi; Ushio Matsukura; Maria Antonia Martins Galeazzi; Masako Kito
Journal of The Japanese Society for Food Science and Technology-nippon Shokuhin Kagaku Kogaku Kaishi | 2015
Mayumi Hachinohe; Shigehiro Naito; Hajime Akashi; Setsuko Todoriki; Ushio Matsukura; Shinichi Kawamoto; Shioka Hamamatsu
Journal of The Japanese Society for Food Science and Technology-nippon Shokuhin Kagaku Kogaku Kaishi | 2004
Akira Horigane; Sumiyo Yamada; Yoshiyuki Hikichi; Seiji Ohba; Ushio Matsukura; Toru Imai
Archive | 1995
Akira Horigane; Hisashi Yoshida; Ushio Matsukura; Yoshihiko Tsukuba-Shi Nawa; Noboru Tsukuba-Shi Horisue; Masayoshi Kamio
Journal of The Japanese Society for Food Science and Technology-nippon Shokuhin Kagaku Kogaku Kaishi | 2014
Mayumi Hachinohe; Shigehiro Naito; Hajime Akashi; Setsuko Todoriki; Ushio Matsukura; Shinichi Kawamoto; Shioka Hamamatsu
Journal of The Japanese Society for Food Science and Technology-nippon Shokuhin Kagaku Kogaku Kaishi | 2013
Setsuko Todoriki; Hiromi Kameya; Shigehiro Naito; Keitarou Kimura; Daisuke Nei; Shoji Hagiwara; Yoshiteru Kakihara; Ayako Minobe; Yuki Shinoda; Ryoko Mizuno; Ushio Matsukura; Shinichi Kawamoto
Archive | 1995
Akira Horikane; Masayoshi Kamio; Ushio Matsukura; 彰 堀金; 潮 松倉; 正義 神尾