Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uta Eberlein is active.

Publication


Featured researches published by Uta Eberlein.


The Journal of Nuclear Medicine | 2015

Biodistribution and Radiation Dosimetry for a Probe Targeting Prostate-Specific Membrane Antigen for Imaging and Therapy

Ken Herrmann; Christina Bluemel; Martina Weineisen; Margret Schottelius; Hans-Jürgen Wester; Johannes Czernin; Uta Eberlein; Seval Beykan; Constantin Lapa; H. Riedmiller; Markus Krebs; Saskia Kropf; Andreas Schirbel; Andreas K. Buck; Michael Lassmann

Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and treatment of prostate cancer. EuK-Subkff-68Ga-DOTAGA (68Ga-PSMA Imaging & Therapy [PSMA I&T]) is a recently introduced PET tracer for imaging PSMA expression in vivo. Whole-body distribution and radiation dosimetry of this new probe were evaluated. Methods: Five patients with a history of prostate cancer were injected intravenously with 91–148 MBq of 68Ga-PSMA I&T (mean ± SD, 128 ± 23 MBq). After an initial series of rapid whole-body scans, 3 static whole-body scans were acquired at 1, 2, and 4 h after tracer injection. Time-dependent changes of the injected activity per organ were determined. Mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. Results: Injection of 150 MBq of 68Ga-PSMA I&T resulted in an effective dose of 3.0 mSv. The kidneys were the critical organ (33 mGy), followed by the urinary bladder wall and spleen (10 mGy each), salivary glands (9 mGy each), and liver (7 mGy). Conclusion: 68Ga-PSMA I&T exhibits a favorable dosimetry, delivering organ doses that are comparable to (kidneys) or lower than those delivered by 18F-FDG.


The Journal of Nuclear Medicine | 2015

Biodistribution and Radiation Dosimetry for the Chemokine Receptor CXCR4-Targeting Probe 68Ga-Pentixafor

Ken Herrmann; Constantin Lapa; Hans-Juergen Wester; Margret Schottelius; Christiaan Schiepers; Uta Eberlein; Christina Bluemel; Ulrich Keller; Stefan Knop; Saskia Kropf; Andreas Schirbel; Andreas K. Buck; Michael Lassmann

68Ga-pentixafor is a promising PET tracer for imaging the expression of the human chemokine receptor 4 (CXCR4) in vivo. The whole-body distribution and radiation dosimetry of 68Ga-pentixafor were evaluated. Methods: Five multiple-myeloma patients were injected intravenously with 90–158 MBq of 68Ga-pentixafor (mean ± SD, 134 ± 25 MBq), and a series of 3 rapid multiple-bed-position whole-body scans were acquired immediately afterward. Subsequently, 4 static whole-body scans followed at 30 min, 1 h, 2 h, and 4 h after administration of the radiopharmaceutical. Venous blood samples were obtained. Time-integrated activity coefficients were determined from multiexponential regression of organ region-of-interest data normalized to the administered activity, for example, the time-dependent percentages of the injected activity per organ. Mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. Results: The effective dose based on 150 MBq of 68Ga-pentixafor was 2.3 mSv. The highest organ-absorbed doses (for 150 MBq injected) were found in the urinary bladder wall (12.2 mGy), spleen (8.1 mGy), kidneys (5.3 mGy), and heart wall (4.0 mGy). Other organ mean absorbed doses were as follows: 2.7 mGy, liver; 2.1 mGy, red marrow; 1.7 mGy, testes; and 1.9 mGy, ovaries. Conclusion: 68Ga-pentixafor exhibits a favorable dosimetry, delivering absorbed doses to organs that are lower than those delivered by 18F-FDG– or 68Ga-labeled somatostatin receptor ligands.


PLOS ONE | 2015

Calibration of the γ-H2AX DNA Double Strand Break Focus Assay for Internal Radiation Exposure of Blood Lymphocytes

Uta Eberlein; Michel Peper; María Fernández; Michael Lassmann; Harry Scherthan

DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers γ-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing γ-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing γ-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra- and inter-subject deviations.


The Journal of Nuclear Medicine | 2016

DNA Damage in Peripheral Blood Lymphocytes of Thyroid Cancer Patients After Radioiodine Therapy

Uta Eberlein; Harry Scherthan; Christina Bluemel; Michael Peper; Constantin Lapa; Andreas K. Buck; Matthias Port; Michael Lassmann

The aim of the study was to investigate DNA double-strand break (DSB) formation and its correlation to the absorbed dose to the blood in patients with surgically treated differentiated thyroid cancer undergoing their first radioiodine therapy for remnant ablation. Methods: Twenty patients were included in this study. At least 7 peripheral blood samples were obtained before and between 0.5 and 120 h after administration of radioiodine. From the time–activity curves of the blood and the whole body, residence times for the blood self-irradiation and the irradiation from the whole body were determined. Peripheral blood lymphocytes were isolated, ethanol-fixed, and subjected to immunofluorescence staining for colocalizing γ-H2AX/53BP1 DSB-marking foci. The average number of DSB foci per cell per patient sample was analyzed as a function of the absorbed dose to the blood and compared with an in vitro calibration curve for 131I and 177Lu established previously in our institution. Results: The average number of radiation-induced foci (RIF) per cell increased over the first 3 h after radionuclide administration and decreased thereafter. A linear fit from 0 to 2 h as a function of the absorbed dose to the blood agreed with our in vitro calibration curve. At later time points, RIF numbers diminished, along with dropping dose rates, indicating progression of DNA repair. Individual patient data were characterized by a linear dose-dependent increase and a biexponential response function describing a fast and a slow repair component. Conclusion: With the experimental results and model calculations presented in this work, a dose–response relationship is demonstrated, and an analytic function describing the time course of the in vivo damage response after internal irradiation of patients with 131I is established.


The Journal of Nuclear Medicine | 2017

Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive?

Uta Eberlein; Marta Cremonesi; Michael Lassmann

In 2005, the term theragnostics (theranostics) was introduced for describing the use of imaging for therapy planning in radiation oncology. In nuclear medicine, this expression describes the use of tracers for predicting the absorbed doses in molecular radiotherapy and, thus, the safety and efficacy of a treatment. At present, the most successful groups of isotopes for this purpose are 123I/124I/131I, 68Ga/177Lu, and 111In/86Y/90Y. The purpose of this review is to summarize available data on the dosimetry and dose–response relationships of several theranostic compounds, with a special focus on radioiodine therapy for differentiated thyroid cancer and peptide receptor radionuclide therapy. These are treatment modalities for which dose-response relationships for healthy tissues and tumors have been demonstrated. In addition, available data demonstrate that posttherapeutic dosimetry after a first treatment cycle predicts the absorbed doses in further cycles. Both examples show the applicability of the concept of theranostics in molecular radiotherapies. Nevertheless, unanswered questions need to be addressed in clinical trials incorporating dosimetry-related concepts for determining the amount of therapeutic activity to be administered.


European Journal of Nuclear Medicine and Molecular Imaging | 2017

The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy

Carlo Chiesa; K. Sjogreen Gleisner; Glenn D. Flux; Jonathan I. Gear; Stephan Walrand; Klaus Bacher; Uta Eberlein; Eric P. Visser; Nicolas Chouin; Michael Ljungberg; M. Bardiès; Michael Lassmann; Lidia Strigari; Mark Konijnenberg

The new European Council Directive 2013/59 (http://eur-lex. europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32013L0059&from=EN), to be translated into national legislations before 6 February 2018, in article 56 (Optimisation) states: BFor all medical exposure of patients for radiotherapeutic purposes, exposures of target volumes shall be individually planned and their delivery appropriately verified, taking into account that doses to non-target volumes and tissues shall be as low as reasonably achievable and consistent with the intended radiotherapeutic purpose of the exposure^. No doubt this statement holds for nuclear medicine therapy, since in article 4 of the same, directive definition 81 states that Bradiotherapeutic^ means pertaining to radiotherapy, including nuclear medicine for therapeutic purposes. The directive thus asks for dosimetry, as is routinely implemented in radiotherapy, using external beam or brachytherapy sources. However, in nuclear medicine therapy, absorbed dose planning is rarely performed. One of the main reasons is the amount of work needed for internal dosimetry that includes multiple whole-body counts or scintigraphy and sometimes blood samples over some days after administration. The Bintended purpose^ in all therapeutic exposures is treatment efficacy against malignant disease. The optimization principle (as low as reasonably achievable, ALARA) of article 56, when applied in a therapy situation, states that absorbed doses to nontarget tissues should be kept reasonably low, but not so low as to lose efficacy. We think that this applies above all to the fight against life-threatening cancer. As a consequence, we believe that to adhere to the optimization principle in oncological patients, nuclear medicine therapy should be based on individualized dosimetry.


European Journal of Nuclear Medicine and Molecular Imaging | 2018

From fixed activities to personalized treatments in radionuclide therapy: lost in translation?

Glenn D. Flux; K. Sjogreen Gleisner; Carlo Chiesa; Michael Lassmann; Nicolas Chouin; Jonathan I. Gear; M. Bardiès; Stephan Walrand; Klaus Bacher; Uta Eberlein; Michael Ljungberg; Lidia Strigari; Eric J. W. Visser; Mark Konijnenberg

We read with interest the letter by Giammarile et al. [1] addressing our editorial in which we proposed that the European Medicines Agency should allow the option of a dosimetrybased approach to the treatment of cancer with radionuclide therapy [2]. Our editorial was intended to draw attention to the potential legal issues of recommending an approach to treatment that could contravene the European Council Directive 2013/59 [3] and national legislation, as the directive (article 56) states that “For all medical exposure of patients for radiotherapeutic purposes, exposures of target volumes shall be individually planned and their delivery appropriately verified...”. This directive is intended to “lay down basic safety standards for the protection of dangers arising from exposure to ionizing radiation” and emphasizes the need for ‘justification’ and ‘optimization’ of intentional radiation exposures of patients. We do not agree with the conclusion of this letter that cancer therapy with radiopharmaceuticals should be developed “in a similar manner to chemotherapeutics^, “independent of tumor load and metastases^ and is “better characterized as a tumor-selective treatment modality with more similarities to systemic chemotherapy”. In any scientific field concerned with biological effects of radiation, whether for therapy or radiation protection purposes, the effects of radiation on tissue are primarily dependent on the well-established measure absorbed dose. Consequently, great efforts are made to calculate absorbed doses in cells, tissues, and organs. The hypothesis that the level of activity administered has a greater impact on treatment outcome than the subsequent biodistribution, the radiation delivery and the absorbed dose is ignoring the results of decades of radiation research on biological systems.


Scientific Reports | 2018

DNA damage in leukocytes after internal ex-vivo irradiation of blood with the α-emitter Ra-223

Sarah Schumann; Uta Eberlein; Razan Muhtadi; Michael Lassmann; Harry Scherthan

Irradiation with high linear energy transfer α-emitters, like the clinically used Ra-223 dichloride, severely damages cells and induces complex DNA damage including closely spaced double-strand breaks (DSBs). As the hematopoietic system is an organ-at-risk for the treatment, knowledge about Ra-223-induced DNA damage in blood leukocytes is highly desirable. Therefore, 36 blood samples from six healthy volunteers were exposed ex-vivo (in solution) to different concentrations of Ra-223. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the decay, ranging from 0 to 142 mGy. γ-H2AX + 53BP1 co-staining and analysis was performed in leukocytes isolated from the irradiated blood samples. For DNA damage quantification, leukocyte samples were screened for occurrence of α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values, being in agreement with a negligible β-contribution (3.7%) to the total absorbed dose to the blood. Our calibration curve will contribute to the biodosimetry of Ra-223-treated patients and early after incorporation of α-emitters.


The Journal of Nuclear Medicine | 2017

Human biodistribution and radiation dosimetry of 18F-CFA, a PET probe targeting the deoxyribonucleoside salvage pathway

Martin Barrio; Claudio Spick; Caius G. Radu; Michael Lassmann; Uta Eberlein; Martin Allen-Auerbach; Christiaan Schiepers; Roger Slavik; Johannes Czernin; Ken Herrmann

18F-clofarabine, a nucleotide purine analog, is a substrate for deoxycytidine kinase (dCK), a key enzyme in the deoxyribonucleoside salvage pathway. 18F-clofarabine might be used to measure dCK expression and thus serve as a predictive biomarker for tumor responses to dCK-dependent prodrugs or small-molecule dCK inhibitors, respectively. As a prerequisite for clinical translation, we determined the human whole-body and organ dosimetry of 18F-clofarabine. Methods: Five healthy volunteers were injected intravenously with 232.4 ± 1.5 MBq of 18F-clofarabine. Immediately after tracer injection, a dynamic scan of the entire chest was acquired for 30 min. This was followed by 3 static whole-body scans at 45, 90, and 135 min after tracer injection. Regions of interest were drawn around multiple organs on the CT scan and copied to the PET scans. Organ activity was determined and absorbed dose was estimated with OLINDA/EXM software. Results: The urinary bladder (critical organ), liver, kidney, and spleen exhibited the highest uptake. For an activity of 250 MBq, the absorbed doses in the bladder, liver, kidney, and spleen were 58.5, 6.6, 6.3, and 4.3 mGy, respectively. The average effective dose coefficient was 5.1 mSv. Conclusion: Our results hint that 18F-clofarabine can be used safely in humans to measure tissue dCK expression. Future studies will determine whether 18F-clofarabine may serve as a predictive biomarker for responses to dCK-dependent prodrugs or small-molecule dCK inhibitors.


The Journal of Nuclear Medicine | 2018

The Relevance of Dosimetry in Precision Medicine

Michael Lassmann; Uta Eberlein

The aim of this review is to provide an overview of the most recent technologic developments in state-of-the-art equipment and tools for dosimetry in radionuclide therapies. This includes, but is not restricted to, calibration methods for imaging systems. In addition, a summary of new developments that consider the influence of small-scale dosimetry and of biologic effects on radionuclide therapies is given. Finally, the current limitations of patient-specific dosimetry such as bone-marrow dosimetry or dosimetry of α-emitters are discussed.

Collaboration


Dive into the Uta Eberlein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seval Beykan

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Ken Herrmann

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge