Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute Bertsche is active.

Publication


Featured researches published by Ute Bertsche.


Molecular Microbiology | 2006

Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli.

Ute Bertsche; Thomas Kast; Benoît Wolf; Claudine Fraipont; Mirjam E. G. Aarsman; Kai Kannenberg; Moritz von Rechenberg; Martine Nguyen-Distèche; Tanneke den Blaauwen; Joachim-Volker Höltje; Waldemar Vollmer

The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin‐binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase‐transpeptidase murein synthase PBP1B was retained by PBP3‐sepharose when a membrane fraction of E. coli was applied. The direct protein–protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two‐hybrid system, and by cross‐linking/co‐immunoprecipitation. In the bacterial two‐hybrid system, a truncated PBP3 comprising the N‐terminal 56 amino acids interacted with PBP1B. Both synthases could be cross‐linked in vivo in wild‐type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.


Journal of Biological Chemistry | 2005

In vitro murein (peptidoglycan) synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli

Ute Bertsche; Eefjan Breukink; Thomas Kast; Waldemar Vollmer

PBP1B is a major bifunctional murein (peptidoglycan) synthase catalyzing transglycosylation and transpeptidation reactions in Escherichia coli. PBP1B has been shown to form dimers in vivo. The KD value for PBP1B dimerization was determined by surface plasmon resonance. The effect of the dimerization of PBP1B on its activities was studied with a newly developed in vitro murein synthesis assay with radioactively labeled lipid II precursor as substrate. Under conditions at which PBP1B dimerizes, the enzyme synthesized murein with long glycan strands (>25 disaccharide units) and with almost 50% of the peptides being part of cross-links. PBP1B was also capable of synthesizing trimeric muropeptide structures. Tri-, tetra-, and pentapeptide compounds could serve as acceptors in the PBP1B-catalyzed transpeptidation reaction.


Journal of Biological Chemistry | 2007

The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli

Patrick Müller; Carolin Ewers; Ute Bertsche; Maria Anstett; Tanja Kallis; Eefjan Breukink; Claudine Fraipont; Mohammed Terrak; Martine Nguyen-Distèche; Waldemar Vollmer

Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli.


Antimicrobial Agents and Chemotherapy | 2011

Correlation of Daptomycin-Resistance in a Clinical Staphylococcus aureus Strain with Increased Cell Wall Teichoic Acid Production and D-alanylation

Ute Bertsche; Christopher Weidenmaier; Daniel Kuehner; Soo-Jin Yang; Stefanie Baur; Stefanie Wanner; Patrice Francois; Jacques Schrenzel; Michael R. Yeaman; Arnold S. Bayer

ABSTRACT Cell wall thickening is a common feature among daptomycin-resistant Staphylococcus aureus strains. However, the mechanism(s) leading to this phenotype is unknown. We examined a number of cell wall synthesis pathway parameters in an isogenic strain set of S. aureus bloodstream isolates obtained from a patient with recalcitrant endocarditis who failed daptomycin therapy, including the initial daptomycin-susceptible parental strain (strain 616) and two daptomycin-resistant strains (strains 701 and 703) isolated during daptomycin therapy. Transmission electron microscopy demonstrated significantly thicker cell walls in the daptomycin-resistant strains than in the daptomycin-susceptible strain, a finding which was compatible with significant differences in dry cell weight of strain 616 versus strains 701 to 703 (P < 0.05). Results of detailed analysis of cell wall muropeptide composition, the degree of peptide side chain cross-linkage, and the amount of the peptidoglycan precursor, UDP-MurNAc-pentapeptide, were similar in the daptomycin-susceptible and daptomycin-resistant isolates. In contrast, the daptomycin-resistant strains contained less O-acetylated peptidoglycan. Importantly, both daptomycin-resistant strains synthesized significantly more wall teichoic acid (WTA) than the parental strain (P < 0.001). Moreover, the proportion of d-alanylated WTA species was substantially higher in the daptomycin-resistant strains than in the daptomycin-susceptible parental strain (P < 0.05 in comparing strain 616 versus strain 701). The latter phenotypic findings correlated with (i) enhanced tagA and dltA gene expression, respectively, and (ii) an increase in surface positive charge observed in the daptomycin-resistant versus daptomycin-susceptible isolates. Collectively, these data suggest that increases in WTA synthesis and the degree of its d-alanylation may play a major role in the daptomycin-resistant phenotype in some S. aureus strains.


PLOS ONE | 2013

Increased Cell Wall Teichoic Acid Production and D-alanylation Are Common Phenotypes among Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) Clinical Isolates

Ute Bertsche; Soo-Jin Yang; Daniel Kuehner; Stefanie Wanner; Nagendra N. Mishra; Tobias Roth; Mulugeta Nega; Alexander Schneider; Christoph Mayer; Timo Grau; Arnold S. Bayer; Christopher Weidenmaier

Multiple mechanisms have been correlated with daptomycin-resistance (DAP-R) in Staphylococcus aureus. However, one common phenotype observed in many DAP-R S. Aureus strains is a thickened cell wall (CW). The first evidence for an impact of CW-linked glycopolymers on this phenotype was recently demonstrated in a single, well-characterized DAP-R methicillin-susceptible S. aureus (MSSA) strain. In this isolate the thickened CW phenotype was linked to an increased production and D-alanylation of wall teichoic acids (WTA). In the current report, we extended these observations to methicillin-resistant daptomycin-sensitive/daptomyin-resistant (DAP-S/DAP-R) strain-pairs. These pairs included methicillin-resistant S. aureus (MRSA) isolates with and without single nucleotide polymorphisms (SNPs) in mprF (a genetic locus linked to DAP-R phenotype). We found increased CW dry mass in all DAP-R vs DAP-S isolates. This correlated with an increased expression of the WTA biosynthesis gene tagA, as well as an increased amount of WTA in the DAP-R vs DAP-S isolates. In addition, all DAP-R isolates showed a higher proportion of WTA D-alanylation vs their corresponding DAP-S isolate. We also detected an increased positive surface charge amongst the DAP-R strains (presumably related to the enhanced D-alanylation). In comparing the detailed CW composition of all isolate pairs, substantive differences were only detected in one DAP-S/DAP-R pair. The thickened CW phenotype, together with an increased surface charge most likely contributes to either: i) a charge-dependent repulsion of calcium complexed-DAP; and/or ii) steric-limited access of DAP to the bacterial cell envelope target. Taken together well-defined perturbations of CW structural and functional metrics contribute to the DAP-R phenotype and are common phenotypes in DAP-R S. Aureus isolates, both MSSA and MRSA. Note: Although “daptomycin-nonsusceptibility” is the generally accepted terminology, we have utilized the term “daptomycin resistance” for ease of presentation in this manuscript


Scientific Reports | 2015

From cells to muropeptide structures in 24 h: Peptidoglycan mapping by UPLC-MS

Daniel Kühner; Mark Stahl; Dogan Doruk Demircioglu; Ute Bertsche

Peptidoglycan (PGN) is ubiquitous in nearly all bacterial species. The PGN sacculus protects the cells against their own internal turgor making PGN one of the most important targets for antibacterial treatment. Within the last sixty years PGN composition has been intensively studied by various methods. The breakthrough was the application of HPLC technology on the analysis of muropeptides. However, preparation of pure PGN relied on a very time consuming method of about one week. We established a purification protocol for both Gram-positive and Gram-negative bacteria which can be completely performed in plastic reaction tubes yielding pure muropeptides within 24 hours. The muropeptides can be analyzed by UPLC-MS, allowing their immediate determination. This new rapid method provides the feasibility to screen PGN composition even in high throughput, making it a highly useful tool for basic research as well as for the pharmaceutical industry.


eLife | 2014

Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

Xiaokun Liu; Heini M. Grabherr; Roland Willmann; Dagmar Kolb; Frédéric Brunner; Ute Bertsche; Daniel Kühner; Mirita Franz-Wachtel; Bushra Amin; Georg Felix; Marc Ongena; Thorsten Nürnberger; Andrea A. Gust

Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001


Antimicrobial Agents and Chemotherapy | 2011

New Role of the Disulfide Stress Effector YjbH in β-Lactam Susceptibility of Staphylococcus aureus

Nadine Göhring; Iris Fedtke; Guoqing Xia; Ana M. Jorge; Mariana G. Pinho; Ute Bertsche; Andreas Peschel

ABSTRACT Staphylococcus aureus is exposed to multiple antimicrobial compounds, including oxidative burst products and antibiotics. The various mechanisms and regulatory pathways governing susceptibility or resistance are complex and only superficially understood. Bacillus subtilis recently has been shown to control disulfide stress responses by the thioredoxin-related YjbH protein, which binds to the transcriptional regulator Spx and controls its degradation via the proteasome-like ClpXP protease. We show that the S. aureus YjbH homolog has a role in susceptibility to the disulfide stress-inducing agent diamide that is similar to that in B. subtilis, and we demonstrate that the four cysteine residues in YjbH are required for this activity. In addition, the inactivation of YjbH led to moderate resistance to oxacillin and other β-lactam antibiotics, and this phenotypic change was associated with higher penicillin-binding protein 4 levels and increased peptidoglycan cross-linking. Of note, the impact of YjbH on β-lactam susceptibility still was observed when the four cysteines of YjbH were mutated, indicating that the roles of YjbH in disulfide stress and β-lactam resistance rely on different types of interactions. These data suggest that the ClpXP adaptor YjbH has more target proteins than previously thought, and that oxidative burst and β-lactam resistance mechanisms of S. aureus are closely linked.


Molecular Microbiology | 2015

The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan

Jack C. Leo; Philipp Oberhettinger; Manish Chaubey; Monika Schütz; Daniel Kühner; Ute Bertsche; Heinz Schwarz; Friedrich Götz; Ingo B. Autenrieth; Murray Coles; Dirk Linke

Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C‐terminal extracellular domain and a β‐barrel transmembrane domain, both proteins also contain a short N‐terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α‐helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM‐containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract.


International Journal of Medical Microbiology | 2015

Peptidoglycan perception—Sensing bacteria by their common envelope structure

Ute Bertsche; Christoph Mayer; Friedrich Götz; Andrea A. Gust

Most Eubacteria possess peptidoglycan (PGN) or murein that surrounds the cytoplasmic membrane. While on the one hand this PGN sacculus is a very protective shield that provides resistance to the internal turgor and adverse effects of the environment, it serves on the other hand as a major pattern of recognition due to its unique structure. Eukaryotes harness this particular bacterial macromolecule to perceive (pathogenic) microorganisms and initiate their immune defence. PGN fragments are generated by bacteria as turnover products during bacterial cell wall growth and these fragments can be sensed by plants and animals to assess a potential bacterial threat. To increase the sensitivity the concentration of PGN fragments can be amplified by host hydrolytic enzymes such as lysozyme or amidase. But also bacteria themselves are able to perceive information about the state of their cell wall by sensing small soluble fragments released from its PGN, which eventually leads to the induction of antibiotic responses or cell differentiation. How PGN is sensed by bacteria, plants and animals, and how the antibacterial defence is modulated by PGN perception is the issue of this review.

Collaboration


Dive into the Ute Bertsche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Stahl

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge