Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute Hamann is active.

Publication


Featured researches published by Ute Hamann.


American Journal of Human Genetics | 1998

Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2 Genes in Breast Cancer Families

Deborah Ford; Douglas F. Easton; Michael R. Stratton; StevenA Narod; David E. Goldgar; Peter Devilee; D.T. Bishop; Barbara L. Weber; Gilbert M. Lenoir; Jenny Chang-Claude; Hagay Sobol; M.D. Teare; Jeffrey P. Struewing; Adalgeir Arason; Siegfried Scherneck; Julian Peto; Timothy R. Rebbeck; Patricia N. Tonin; Susan L. Neuhausen; Rosa B. Barkardottir; J. Eyfjord; Henry T. Lynch; Bruce A.J. Ponder; Simon A. Gayther; J.M. Birch; Annika Lindblom; Dominique Stoppa-Lyonnet; Yves-Jean Bignon; Åke Borg; Ute Hamann

The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.


Cancer Research | 2011

Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer

Kristen N. Stevens; Celine M. Vachon; Adam Lee; Susan L. Slager; Timothy G. Lesnick; Curtis Olswold; Peter A. Fasching; Penelope Miron; Diana Eccles; Jane Carpenter; Andrew K. Godwin; Christine B. Ambrosone; Robert Winqvist; Hiltrud Brauch; Marjanka K. Schmidt; Angela Cox; Simon S. Cross; Elinor Sawyer; Arndt Hartmann; Matthias W. Beckmann; Rud̈iger Schulz-Wendtland; Arif B. Ekici; William Tapper; Susan M. Gerty; Lorraine Durcan; Nikki Graham; Rebecca Hein; Stephan Nickels; Dieter Flesch-Janys; Judith Heinz

Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiologic factors that promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome-wide association studies display heterogeneity of effect among breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative breast cancer.


British Journal of Cancer | 2009

The TP53 Arg72Pro and MDM2 309G > T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

Olga M. Sinilnikova; Antonis C. Antoniou; Jacques Simard; Sue Healey; Mélanie Léoné; Daniel Sinnett; Amanda B. Spurdle; Jonathan Beesley; X Chen; kConFab; Mark H. Greene; Jennifer T. Loud; Flavio Lejbkowicz; Gad Rennert; Irene L. Andrulis; Ocgn; Susan M. Domchek; Katherine L. Nathanson; S. Manoukian; P. Radice; Irene Konstantopoulou; Ignacio Blanco; A L Laborde; Mercedes Durán; A Osorio; Javier Benitez; Ute Hamann; Frans B L Hogervorst; T. A M van Os; Hans J. J. P. Gille

Background:The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance.Methods:To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework.Results:No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association.Conclusion:There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers.


Journal of Medical Genetics | 1997

Low frequency of BRCA1 germline mutations in 45 German breast/ovarian cancer families.

Ute Hamann; M Häner; U Stosiek; G Bastert; Rodney J. Scott

In this study we investigated 45 German breast/ovarian cancer families for germline mutations in the BRCA1 gene. We identified four germline mutations in three breast cancer families and in one breast-ovarian cancer family. among these were one frameshift mutation, one nonsense mutation, one novel splice site mutation, and one missense mutation. The missense mutation was also found in 2.8% of the general population, suggesting that it is not disease associated. The average age of disease onset in those families harbouring causative mutations was between 32.3 and 37.4 years, whereas the family harbouring the missense mutation had an average age of onset of 51.2 years. These findings show that BRCA1 is implicated in a small fraction of breast/ovarian cancer families suggesting the involvement of another susceptibility gene(s).


Journal of Medical Genetics | 2002

Contribution of BRCA2 germline mutations to hereditary breast/ovarian cancer in Germany

Ute Hamann; Xinmin Liu; S Lange; Hans-Ulrich Ulmer; Axel Benner; Rodney J. Scott

Breast cancer is the most common malignancy affecting women world wide.1 Approximately 1 in 10 women will develop breast cancer during their life time2 and 5-10% of all breast cancers, in particular those with an early age of onset, are the result of a genetic predisposition owing to the inheritance of a dominant susceptibility gene(s). In the context of high risk families, one important gene is the BRCA2 gene located on chromosome 13q12-13. BRCA2 was localised to chromosome 13q by linkage analysis in 19943 and cloned in 1995.4,5 To date, more than 250 BRCA2 germline mutations have been identified in breast/ovarian cancer families.6 The majority of these mutations are nonsense mutations or frameshift mutations that generate premature termination codons.7 Recent studies on highly selected families with at least four cases of breast cancer suggest that BRCA2 accounts for the majority of breast cancer families where males as well as females are affected, for about one third of the families with female breast cancer alone, and only for a few families containing multiple cases of breast and ovarian cancer.8 BRCA2 encodes a nuclear protein of 3418 amino acid residues that is postulated to play a role in the regulation of gene expression9 and in DNA double strand break repair and homologous recombination.10 Estimates of the cumulative breast cancer risks by the age of 70 in BRCA2 mutation carriers vary from 37-85%8,11 and the cumulative ovarian cancer risks from 16-27%.8,12 There is evidence for an increased risk of several other cancers including prostate cancer, pancreatic cancer, gall bladder and bile duct cancer, stomach cancer, and malignant melanoma.13 Analyses of BRCA2 mutation data have provided evidence that the risks of breast cancer and ovarian cancer are related to …


PLOS ONE | 2016

RAD51B in Familial Breast Cancer

Liisa M. Pelttari; Sofia Khan; Mikko Vuorela; Johanna I. Kiiski; Sara Vilske; Viivi Nevanlinna; Salla Ranta; Johanna Schleutker; Robert Winqvist; Anne Kallioniemi; Thilo Dörk; Natalia Bogdanova; Jonine D. Figueroa; Paul Pharoah; Marjanka K. Schmidt; Alison M. Dunning; Montserrat Garcia-Closas; Manjeet K. Bolla; Joe Dennis; Kyriaki Michailidou; Qin Wang; John L. Hopper; Melissa C. Southey; Efraim H. Rosenberg; Peter A. Fasching; Matthias W. Beckmann; Julian Peto; Isabel dos-Santos-Silva; Elinor Sawyer; Ian Tomlinson

Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk.


Archive | 2015

Genetic variation in the immunosuppression pathway genes and breast cancer: a pooled analysis of 42,510 cases and 40,577 controls from the Breast

Jieping Lei; Anja Rudolph; Kirsten B. Moysich; Sabine Behrens; Ellen L. Goode; M.K. Bolla; Joe Dennis; Alison Margaret Dunning; Douglas F. Easton; Qin Wang; Javier Benitez; John L. Hopper; Melissa C. Southey; Marjanka K. Schmidt; Annegien Broeks; Peter A. Fasching; Lothar Haeberle; Julian Peto; Isabel dos-Santos-Silva; Elinor Sawyer; Ian Tomlinson; Barbara Burwinkel; Frederik Marme; Pascal Guénel; Thérèse Truong; Stig E. Bojesen; Henrik Flyger; Sune F. Nielsen; Børge G. Nordestgaard; Anna González-Neira

Collaboration


Dive into the Ute Hamann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias W. Beckmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Peter A. Fasching

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge